Skip to main content

Advertisement

Log in

Orthohantavirus Infection in Two Rodent Species that Inhabit Wetlands in Argentina

  • Original Contribution
  • Published:
EcoHealth Aims and scope Submit manuscript

Abstract

Previous research conducted in central-east region of Argentina recorded potential orthohantavirus host rodents in diverse environments, but no research has focused particularly on islands, the environments that present the greatest risk to humans. For this reason, the aims of this research were to determine the orthohantavirus host in the rodent community focused on islands of Paraná River Delta, central-east region of Argentina, to identify temporal and spatial factors associated with orthohantavirus prevalence variations, to compare the functional traits of seropositive and seronegative rodents, and to explore the association between orthohantavirus prevalence and rodent community characteristics between August 2014 and May 2018. With a trapping effort of 14,600 trap-nights, a total of 348 sigmodontine rodent specimens belonging to seven species were captured 361 times. The overall antibody prevalence was 4.9%. Particularly, 14.9% of Oligoryzomys flavescens and 1.5% of Oxymycterus rufus, mainly reproductively active adult males, had antibodies against orthohantavirus. Even though O. flavescens inhabit all islands, our results suggest spatial heterogeneity in the viral distribution, with two months after periods of low temperature presenting increases in seroprevalence. This could be a response to the increased proportion of adults present in the rodent population. In addition, an association was found between the high seroprevalence and the diversity of the rodent assemblage. We also found 1.5% of O. rufus exposed to orthohantavirus, which shows us that further investigation of the ecology of the virus is needed to answer whether this species act as a spillover or a new competent host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  • Allan R, Lindesay J, Parker D (1996) El Niño Southern Oscillation & Climatic Variability. Canberra: CSIRO publishing

    Google Scholar 

  • Alonso DO, Iglesias A, Coelho R, Periolo N, Bruno A, Córdoba MT, Filomarino N, Quipildor M, Biondo E, Fortunato E, Bellomo C, Martínez VP (2019) Epidemiological description, case-fatality rate, and trends of Hantavirus Pulmonary Syndrome: 9 years of surveillance in Argentina. Journal of Medical Virology 91(7):1173–1181. https://doi.org/10.1002/jmv.25446

    Article  PubMed  Google Scholar 

  • Aplin, KP, Brown PR, Jacob J, Krebs CJ, Singleton GR (2003) Field methods for rodent studies in Asia and the Indo-Pacific. p 213

  • Barton K (2020) MuMIn: Multi-Model Inference. R Package Version 1(43):17

    Google Scholar 

  • Bates D, Maechler M, Bolker BB, Walker S (2015) Lme4: Linear Mixed-Effects Models Using Eigen and S4. Journal of Statistical Software 67 (1): 1–48. https://doi.org/10.18637/jss.v067.i01.

  • Burgos EF, Vadell M V, Bellomo CM, Martinez VP, Salomon OD, Gómez Villafañe IE (2021) First evidence of Akodon-borne orthohantavirus in Northeastern Argentina. EcoHealth 1–11. https://doi.org/10.1007/s10393-021-01564-6

  • Burnham KP, Model Anderson DR., Selection and Multimodel Inference, (2002) A Practical information-theoretic approach. Second. New York: Springer-Verlag, p 512

    Google Scholar 

  • Busch M, Alvarez MR, Cittadino EA, Kravetz FO (1997) Habitat selection and interspecific competition in rodents in pampean agroecosystems. Mammalia 61:167–184

    Article  Google Scholar 

  • Busch M, Cavia R, Carbajo A, Bellomo C, Gonzalez Capria S, Padula P (2004) Spatial and temporal analysis of the distribution of Hantavirus Pulmonary Syndrome (HPS) in Buenos Aires Province, and its relation to rodent distribution, agricultural and demographic variables. Tropical Medicine and International Health 9:508–519

    Article  PubMed  CAS  Google Scholar 

  • Calderón G, Pini N, Bolpe J, Levis S, Mills JN, Segura E, Guthmann N, Cantoni G, Becker J, Fonollat A, Ripoll C, Bortman M, Benedetti R, Sabattini M, Enria D (1999) Hantavirus reservoir hosts associated with peridomestic habitats in Argentina. Emerging Infectious Diseases 5(6):792–797. https://doi.org/10.3201/eid0506.990608

    Article  PubMed  PubMed Central  Google Scholar 

  • Colombo VC, Brignone J, Sen C, Previtali MA, Martin ML, Levis S, Monje L, González-Ittig R, Beldomenico PM (2019) Orthohantavirus genotype Lechiguanas in Oligoryzomys nigripes (Rodentia: Cricetidae): New evidence of host-switching. Acta Tropica 191:133–138

    Article  PubMed  Google Scholar 

  • Contreras F, Andreo V, Hechem V, Polop J, Provensal MC (2023) Colilargo’s occupancy and the role of native and exotic plants in hantavirus expansion and transmission risk. Mammal Research 68:167–176. https://doi.org/10.1007/s13364-023-00671-9

    Article  Google Scholar 

  • Crawley MJ (2012) The R Book. John Wiley & Sons

    Book  Google Scholar 

  • de Oliveira RC, Guterres A, Fernandes J, D’Andrea PS, Bonvicino CR, de Lemos ERS (2014) Hantavirus reservoirs: Current status with an emphasis on data from Brazil. Viruses 6(5):1929–1973

    Article  PubMed  Google Scholar 

  • de St Maurice A, Ervin E, Schumacher M, Yaglom H, VinHatton E, Melman S, Komatsu K, House J, Peterson D, Buttke D, Ryan A, Yazzie D, Manning C, Ettestad P, Rollin P, Knust B (2017) Exposure characteristics of Hantavirus Pulmonary Syndrome patients, United States, 1993–2015. Emerging Infectious Diseases 23(5):733. https://doi.org/10.3201/eid2305.161770

    Article  Google Scholar 

  • Del Valle H, Sione WF, Aceñolaza PG (2022) Wetland fire assessment and monitoring in the paraná river delta, using radar and optical data for burnt area mapping. Fire 5(6):190

    Article  Google Scholar 

  • Delfraro A, Tomé L, D’Elía G, Clara M, Achával F, Russi JC, Arbiza Rodonz JR (2008) Juquitiba-like hantavirus from 2 nonrelated rodent species. Uruguay. Emerging Infectious Diseases 14(9):1447–1451. https://doi.org/10.3201/eid1409.080455

    Article  PubMed  Google Scholar 

  • Dizney L, Dearing MD (2013) The role of behavioural heterogeneity on infection patterns: implications for pathogen transmission. Animal Behaviour 86(5):911–916

    Article  Google Scholar 

  • Donalisio MR, Peterson AT (2011) Environmental factors affecting transmission risk for hantaviruses in forested portions of southern Brazil. Acta Tropica 119(2–3):125–130. https://doi.org/10.1016/j.actatropica.2011.04.019

    Article  PubMed  Google Scholar 

  • Douglass RJ, Wilson T, Semmens WJ, Zanto SN, Bond CW, Van Horn RC, Mills JN (2001) Longitudinal studies of Sin Nombre virus in deer mouse-dominated ecosystems of Montana. The American Journal of Tropical Medicine and Hygiene 65(1):33–41

    Article  PubMed  CAS  Google Scholar 

  • Douglass RJ, Calisher CH, Wagoner KD, Mills JN (2007) Sin Nombre virus infection of deer mice in Montana: characteristics of newly infected mice, incidence, and temporal pattern of infection. Journal of Wildlife Diseases 43(1):12–22

    Article  PubMed  Google Scholar 

  • Escutenaire S, Chalon P, De Jaegere F, Karelle-Bui L, Mees G, Brochier B, Rozenfeld F, Pastoret PP (2002) Behavioral, physiologic, and habitat influences on the dynamics of Puumala virus infection in bank voles (Clethrionomys glareolus). Emerging Infectious Diseases 8(9):930

    Article  PubMed  PubMed Central  Google Scholar 

  • Ezenwa VO, Godsey MS, King RJ, Guptill SC (2005) Avian Diversity and West Nile Virus: Testing Associations between Biodiversity and Infectious Disease Risk. Proceedings of the Royal Society b: Biological Sciences 273(1582):109–117

    Article  PubMed Central  Google Scholar 

  • Ferro I, Bellomo CM, López W, Coelho R, Alonso D, Bruno A, Córdoba FE, Martinez VP (2020) Hantavirus Pulmonary Syndrome outbreaks associated with climate variability in Northwestern Argentina, 1997–2017. PLoS Neglected Tropical Diseases 14(11):e0008786

    Article  PubMed  PubMed Central  Google Scholar 

  • Firth C, Tokarz R, Simith DB, Nunes MRT, Bhat M, Rosa EST, Medeiros BA, Palacios G, Vasconcelos PFC, Lipkin WI (2012) Diversity and distribution of Hantaviruses in South America. Journal of Virology [internet] 86(24):13756–13766. https://doi.org/10.1128/JVI.02341-12

    Article  PubMed  CAS  Google Scholar 

  • Fox J, Weisberg S, Price B (2019) Companion to Applied Regression [R Package Car Version 3.0–3]. Comprehensive R Archive Network (CRAN).

  • Freeman E (2015) Package ‘PresenceAbsence.’ R Package. https://doi.org/10.18637/jss.v023.i11

  • Gómez Villafañe IE, Miño M, Cavia R, Hodara K, Courtalón P, Suárez OV, Busch M (2005) Roedores: Guía de la Provincia de Buenos Aires. Buenos Aires: Literature of Latin America (LOLA).100 p.

  • González-Ittig RE, Rivera PC, Levis SC, Calderón GE, Gardenal CN (2014) The molecular phylogenetics of the genus Oligoryzomys (Rodentia: Cricetidae) clarifies rodent host-Hantavirus associations. Zoological Journal of the Linnean Society 171(2):457–474. https://doi.org/10.1111/zoj.12133

    Article  Google Scholar 

  • Gorosito IL, Douglass RJ (2017) A damped precipitation-driven, bottom-up model for deer mouse population abundance in the northwestern United States. Ecology and Evolution 00:1–11. https://doi.org/10.1002/ece3.3598

    Article  Google Scholar 

  • Halliday FW, Rohr JR, Laine AL (2020) Biodiversity loss underlies the dilution effect of biodiversity. Ecology Letters 23(11):1611–1622. https://doi.org/10.1111/ele.13590

    Article  PubMed  PubMed Central  Google Scholar 

  • Hinson ER, Shone SM, Zink MC, Glass GE, Klein SL (2004) Wounding: the primary mode of Seoul virus transmission among male Norway rats. The American Journal of Tropical Medicine and Hygiene 70(3):310–317

    Article  PubMed  Google Scholar 

  • Hjelle B, Torres-Pérez F (2010) Hantaviruses in the Americas and their role as emerging pathogens. Viruses 2(12):2559–2586. https://doi.org/10.3390/v2122559

    Article  PubMed  PubMed Central  Google Scholar 

  • Hodara K, Busch M (2010) Patterns of macro and microhabitat use of two rodent species in relation to agricultural practices. Ecological Research 25:113–121

    Article  Google Scholar 

  • Holmes EC, Zhang YZ (2015) The evolution and emergence of Hantaviruses. Current Opinion in Virology [Internet]. 10 (L): 27–33. https://doi.org/10.1016/j.coviro.2014.12.007

  • Kalesnik F, Aceñolaza P, Hurtado M, Martinez J (2009) Latrubesse Special Issue Relationship between vegetation of the levee neo-ecosystems and environmental heterogeneity in the Lower Delta of the Parana River, Argentina. Water and Environment Journal 25 (2011) 88–98. https://doi.org/10.1111/j.1747-6593.2009.00196.x

  • Keesing F, Belden LK, Daszak P, Dobson A, Drew Harvell C, Holt RD, Hudson P, Jolles A, Jones KE, Mitchell CE (2010) Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468(7324):647

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Kelt DA, Hafner MS (2010) Updated guidelines for protection of mammalogists and wildlife researchers from hantavirus pulmonary syndrome (HPS). Journal of Mammalogy 91(6):1524–1527. https://doi.org/10.1644/10-MAMM-A-306.1

    Article  Google Scholar 

  • Kuenzi AJ, Morrison ML, Swann DE, Hardy PC, Downard GT (1999) A longitudinal study of sin nombre virus prevalence in rodents. Southeastern Arizona. Emerging Infectious Diseases 5(1):113

    Article  PubMed  CAS  Google Scholar 

  • Kuhn JH, Schmaljohn CS (2023) A Brief History of Bunyaviral Family Hantaviridae. Diseases 11(1):38. https://doi.org/10.3390/diseases11010038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Landis JR, Koch GG (1977) The Measurement of Observer Agreement for Categorical Data. Biometrics 33(1):159–174. https://doi.org/10.2307/2529310

    Article  PubMed  CAS  Google Scholar 

  • Levis S, Rowe JE, Morzunov S, Enria DA (1997) New hantaviruses causing hantavirus pulmonary syndrome in central Argentina HTLV-I provirus in seronegative healthy blood donors Inhaled nitric oxide and exercise capacity in congestive heart failure. The Lancet 349:998–999

    Article  CAS  Google Scholar 

  • López WR, Altamiranda-Saavedra M, Kehl SD, Ferro I, Bellomo C, Martínez VP, Simoy MI, Gil JF (2023) Modeling potential risk areas of orthohantavirus transmission in northwestern Argentina using ecological niche approach. BMC Public Health 23(1):1–14. https://doi.org/10.1186/s12889-023-16071-2

    Article  Google Scholar 

  • Luis AD, Douglass RJ, Hudson PJ, Mills JN, Bjørnstad ON (2012) Sin Nombre hantavirus decreases survival of male deer mice. Oecologia 2(169):431–439. https://doi.org/10.1007/s00442-011-2219-2

    Article  ADS  Google Scholar 

  • Luis AD, Kuenzi AJ, Mills JN (2018) Species diversity concurrently dilutes and amplifies transmission in a zoonotic host-pathogen system through competing mechanisms. Proceedings of the National Academy of Sciences 115(31):7979–7984

    Article  ADS  CAS  Google Scholar 

  • Luis AD, Douglass RJ, Mills JN, Bjørnstad O N (2010) The effect of seasonality, density and climate on the population dynamics of Montana deer mice, important reservoir hosts for Sin Nombre hantavirus Journal of Animal Ecology 79: 462–470. https://doi.org/10.1111/j.1365-2656.2009.01646.x

  • Madhav NK, Wagoner KD, Douglass RJ, Mills JN (2007) Delayed density-dependent prevalence of Sin Nombre Virus antibody in Montana deer mice (Peromyscus maniculatus) and implications for human disease risk. Vector-Borne and Zoonotic Diseases 7(3):353–364

    Article  PubMed  Google Scholar 

  • Magurran AE (2013) Measuring Biological Diversity. John Wiley & Sons

    Google Scholar 

  • Maroli M, Vadell MV, Padula P, Gómez Villafañe IE (2018) Rodent abundance and hantavirus infection in protected area. East-Central Argentina. Emerging Infectious Diseases 24(1):131–134. https://doi.org/10.3201/eid2401.171372

    Article  PubMed  Google Scholar 

  • Maroli M, Burgos EF, Piña CI, Gómez Villafañe IE (2021) Population survey of small rodents on islands located inside a region of endemism for Hantavirus Pulmonary Syndrome. Journal of Mammalogy 103(1):209–220. https://doi.org/10.1093/jmammal/gyab119

    Article  Google Scholar 

  • Maroli M, Crosignani B, Piña CI, Coelho R, Martínez VP, Gómez Villafañe IE (2020) New data about home range and movements of Oligoryzomys flavescens (Rodentia: Cricetidae) help to understand the spread and transmission of andes virus that causes Hantavirus Pulmonary Syndrome. Zoonoses and Public Health 67 (3). https://doi.org/10.1111/zph.12690

  • Martinez VP, Bellomo CM, Cacace ML, Suárez P, Bogni L, Padula PJ (2010) Hantavirus Pulmonary Syndrome in Argentina, 1995–2008. Emerging Infectious Diseases 16(12):1853–1860. https://doi.org/10.3201/eid1612.091170

    Article  PubMed  PubMed Central  Google Scholar 

  • Mazerolle MJ (2020) AICcmodavg: Model Selection and Multimodel Inference Based on (Q)AIC(c). R Package Version 2.3–0.

  • Mills JN, Ellis BA, McKee KT, Maiztegui JI, Childs JE (1991) Habitat associations and relative densities of rodent populations in cultivated areas of Central Argentina. Journal of Mammalogy 72:470–479

    Article  Google Scholar 

  • Mills JN, Yates TL, Ksiazek TG, Peters CJ, Childs JE (1999) Long-term studies of hantavirus reservoir populations in the Southwestern United States: rationale, potential, and methods. Emerging Infectious Diseases 5(1):95–101. https://doi.org/10.3201/eid0501.990111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mills JN, Schmidt K, Ellis BA, Calderón G, Enría DA, Ksiazek TG (2007) A longitudinal study of hantavirus infection in three sympatric reservoir species in agroecosystems on the Argentine Pampa. Vector-Borne and Zoonotic Diseases 7(2):229–240. https://doi.org/10.1089/vbz.2006.0614

    Article  PubMed  Google Scholar 

  • Mills JN (2005) Regulation of rodent-borne viruses in the natural host: implications for human disease. Infectious Diseases from Nature: Mechanisms of Viral Emergence and Persistence: 45–57.

  • Muschetto E, Cueto GR, Cavia R, Padula PJ, Suárez OV (2018) Long-term study of a hantavirus reservoir population in an urban protected area, Argentina. EcoHealth. https://doi.org/10.1007/s10393-018-1360-3.

  • Nichol ST, Spiropoulou CF, Morzunov S, Rollin PE, Ksiazek TG, Feldmann H, Sanchez A, Childs J, Zaki S, Peters CJ (1993) Genetic identification of a hantavirus associated with an outbreak of acute respiratory illness. Science 262:914–917

    Article  ADS  PubMed  CAS  Google Scholar 

  • Olsson GE, Leirs H, Henttonen H (2010) Hantaviruses and their hosts in Europe: reservoirs here and there, but not everywhere? Vector-Borne and Zoonotic Diseases 10(6):549–561

    Article  PubMed  Google Scholar 

  • Ostfeld RS, Keesing F (2000) Biodiversity series: the function of biodiversity in the ecology of vector-borne zoonotic diseases. Canadian Journal of Zoology 78(12):2061–2078

    Article  Google Scholar 

  • Owen RD, Goodin DG, Koch DE, Chu YK, Jonsson CB (2010) Spatiotemporal variation in Akodon montensis (Cricetidae: Sigmodontinae) and hantaviral seroprevalence in a subtropical forest ecosystem. Journal of Mammalogy. 91:467–481. https://doi.org/10.1644/09-MAMM-A-152.1

    Article  Google Scholar 

  • Padula PJ, Rossi CM, Della Valle MO, Martínez VP, Colavecchia SB, Edelstein A, Miguel SDL, Rabinovich RD, Segura EL (2000) Development and evaluation of a solid-phase enzyme immunoassay based on andes hantavirus recombinant nucleoprotein. Journal of Medical Microbiology 49(2):149–155. https://doi.org/10.1099/0022-1317-49-2-149

    Article  PubMed  CAS  Google Scholar 

  • Padula PJ, Figueroa R, Navarrete M, Pizarro E, Cadiz R, Jofre C, Zaror L, Rodriguez E, Murúa R, Bellomo C (2004) Transmission study of Andes Hantavirus infection in wild sigmodontine rodents. Journal of Virology 78(21):11972–11979. https://doi.org/10.1128/JVI.78.21.11972

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Padula P, Martinez VP, Bellomo C, Maidana S, San Juan J, Tagliaferri P, Bargardi S, Vazquez C, Colucci N, Estévez J, Almiron M (2007) Pathogenic Hantaviruses, Northeastern Argentina and Eastern Paraguay. Emerging Infectious Diseases 13(8):1211–1214. https://doi.org/10.3201/eid1308.061090

    Article  PubMed  PubMed Central  Google Scholar 

  • PAHO/WHO | Hantavirus. Published: 11 January 2019. Available: https://www3.paho.org/hq/index.php?option=com_content&view=article&id=14911:hantavirus&Itemid=0&lang=en#gsc.tab=0 [accessed September 5, 2023]

  • Palma RE, Polop JJ, Owen RD, Mills JN (2012) Ecology of Rodent-Associated Hantaviruses in the Southern Cone of South America: Argentina, Chile, Paraguay, and Uruguay. Journal of Wildlife Diseases 48(2):267–281. https://doi.org/10.7589/0090-3558-48.2.267

    Article  PubMed  Google Scholar 

  • Peters CJ (2006) Emerging infections: lessons from the viral hemorrhagic fevers. Transactions of the American Clinical and Climatological Association 117:189–197

    PubMed  PubMed Central  CAS  Google Scholar 

  • Peters CJ, Khan AS (2002) Hantavirus Pulmonary Syndrome: The New American Hemorrhagic Fever. Clinical Infectious Diseases 34(9):1224–1231. https://doi.org/10.1086/339864

    Article  PubMed  CAS  Google Scholar 

  • Pfäffle M, Littwin N, Petney TN (2015) The Relationship between Biodiversity and Disease Transmission Risk. Research and Reports in Biodiversity Studies, 4:9–20. https://doi.org/10.2147/RRBS.S52433

    Article  Google Scholar 

  • Piudo L, Monteverde MJ, Walker RS, Douglass RJ (2012) Características de Oligoryzomys longicaudatus Asociadas a La Presencia Del Virus Andes (Hantavirus). Revista Chilena De Infectología 29(2):200–206

    Article  PubMed  Google Scholar 

  • Polop FJ, Provensal MC, Pini N, Levis SC, Priotto JW, Enría D, Calderón GE, Costa F, Polop JJ (2010) Temporal and spatial host abundance and prevalence of Andes hantavirus in Southern Argentina. EcoHealth 7(2):176–184. https://doi.org/10.1007/s10393-010-0333-y

    Article  PubMed  Google Scholar 

  • Polop FJ, Levis SC, Pini N, Enría D, Polop JJ, Provensal MC (2018) Factors associated with hantavirus infection in a wild host rodent from Cholila, Chubut Province, Argentina. Mammalian Biology 88:107–113

    Article  Google Scholar 

  • Polop JJ, Busch M, editors. Biología y ecología de pequeños roedores en la región pampeana de Argentina: enfoques y perspectivas. Córdoba: Universidad Nacional de Córdoba; 2010. 328 p.

  • Prist PR, D´ Andrea PS, Metzger JP, (2017) Landscape, climate and hantavirus cardiopulmonary syndrome outbreaks. Ecohealth 14:614–629

    Article  PubMed  Google Scholar 

  • R Core Team. 2020. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/.

  • Raboni SM, Delfraro A, De Borba L, Teixeira BR, Stella V, De Araujo MR, Carstensen S, Rubio G, Maron A, Lemos ERS, D’Andrea PS, Duarte dos Santos CN (2012) Hantavirus Infection Prevalence in Wild Rodents and Human Anti-Hantavirus Serological Profiles from Different Geographic Areas of South Brazil. American Journal of Tropical Medicine and Hygiene 87(2):371–378. https://doi.org/10.4269/ajtmh.2012.11-0762

    Article  PubMed  PubMed Central  Google Scholar 

  • Randolph SE (2012) Dobson ADM (2012) Pangloss revisited: A critique of the dilution effect and the biodiversity-buffers-disease paradigm. Parasitology. 139(7):847–863. https://doi.org/10.1017/S0031182012000200

    Article  PubMed  CAS  Google Scholar 

  • Reil D, Imholt C, Eccard JA, Jacob J (2015) Beech fructification and bank vole population dynamics - Combined analyses of promoters of human Puumala virus infections in Germany, PLoS One 10. https://doi.org/10.1371/journal. pone.0134124

  • Reusken C, Heyman P (2013) Factors driving hantavirus emergence in Europe.Current Opinion in Virology [Internet] 3(1):92–9. Available from: https://doi.org/10.1016/j.coviro.2013.01.002

  • Rowe JE, St. Jeor SC, Riolo J, Otteson EW, Monroe MC, Henderson WW, Ksiazek TG, Rollin PE Nichol ST, (1995) Coexistence of several novel hantaviruses in rodents indigenous to North America. Virology 213(1):122–130

    Article  PubMed  CAS  Google Scholar 

  • Salkeld DJ, Padgett KA, Holland Jones J (2013) A meta-analysis suggesting that the relationship between biodiversity and risk of zoonotic pathogen transmission Is Idiosyncratic. Ecology Letters 16(5):679–686. https://doi.org/10.1111/ele.12101

    Article  PubMed  PubMed Central  Google Scholar 

  • Sikes RS (2016) 2016 Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. Journal of Mammalogy 97(3):663–688. https://doi.org/10.1093/jmammal/gyw078

    Article  PubMed  PubMed Central  Google Scholar 

  • Suárez OV, Bonaventura SM (2001) Habitat use and diet in sympatric species of rodents of the low Parana delta. Argentina. Mammalia 65(2):167–176

    Article  Google Scholar 

  • Suárez OV, Cueto GR, Cavia R, Gómez Villafañe IE, Bilenca DN, Edelstein A, Martínez P, Miguel S, Bellomo C, Hodara K, Padula PJ, Busch M (2003) Prevalence of Infection with Hantavirus in Rodent Populations of Central Argentina. Memorias Do Instituto Oswaldo Cruz 98(6):727–732

    Article  PubMed  Google Scholar 

  • Vadell MV, Gómez Villafañe IE (2016) Environmental variables associated with hantavirus reservoirs and other small rodent species in two national parks in the Parana Delta, Argentina: Implications for disease prevention. Ecohealth 13(2):248–260. https://doi.org/10.1007/s10393-016-1127-7

    Article  PubMed  Google Scholar 

  • Vadell MV, Bellomo C, San Martín A, Padula P, Gómez Villafañe IE (2011) Hantavirus ecology in rodent populations in three protected areas of Argentina. Tropical Medicine and International Health 16(10):1342–1352. https://doi.org/10.1111/j.1365-3156.2011.02838.x

    Article  PubMed  CAS  Google Scholar 

  • Vadell MV, Gómez Villafañe IE, Carbajo AE (2020) Hantavirus infection and biodiversity in the Americas. Oecologia 192(1):169–177

    Article  ADS  PubMed  Google Scholar 

  • Wilson D E, Lacher TE, Mittermeier RA, eds (2017) Handbook of the Mammals of the World. Vol. 7, Rodents II. Barcelona: Lynx Ediciones.

  • Yahnke CJ, Meserve PL, Ksiazek TG, Mills JN (2001) Patterns of infection with Laguna Negra virus in wild populations of Calomys laucha in the central Paraguayan chaco. American Journal of Tropical Medicine and Hygiene 65:768–776. https://doi.org/10.4269/ajtmh.2001.65.768

    Article  PubMed  CAS  Google Scholar 

  • Yanagihara R, Hun S, Arai S, Ji H, Song J (2014) Hantaviruses : Rediscovery and new beginnings. Virus Research 187:6–14

    Article  PubMed  CAS  Google Scholar 

  • Yates TL, Mills JN, Parmenter CA, Ksiazek TG, Parmenter RR, Vande Castle JR, Calisher CH, Nichol ST, Abbott KD, Young JC, Morrison ML, Beaty BJ, Dunnum JL, Baker RJ, Salazar-Bravo J, Peters CJ (2002) The ecology and evolutionary history of an emergent disease: Hantavirus Pulmonary Syndrome. Bioscience 52(11):989–998

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. New York: Springer. https://doi.org/10.1007/978-0-387-87458-6e-ISBN

    Book  Google Scholar 

  • Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution 1(1):3–14

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to CONICET and Universidad de Buenos Aires for financial support for this study; to Administración de Parques Nacionales for their research authorizations to work in Pre-Delta and Islas de Santa Fe National Parks and their logistic support; to Entre Ríos and Santa Fe provinces for extending research authorizations. We also thank Eliana Burgos and Belén Crosignani for providing their help during the fieldwork.

Funding

Funding was provided by Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel E. Gómez Villafañe.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maroli, M., Bellomo, C.M., Coelho, R.M. et al. Orthohantavirus Infection in Two Rodent Species that Inhabit Wetlands in Argentina. EcoHealth 20, 402–415 (2023). https://doi.org/10.1007/s10393-023-01661-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10393-023-01661-8

Keywords

Navigation