Skip to main content

Advertisement

Log in

Ecological Degradation and the Risk of Mosquito-Borne Disease in the Great Lakes Basin

  • Forum
  • Published:
EcoHealth Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Source: ArboNET, Arboviral Diseases Branch (Centers for Disease Control and Prevention (CDC), 2021).

References

  • Akram W, Ali-Khan HA (2016) Odonate Nymphs: Generalist Predators and their Potential in the Management of Dengue Mosquito, Aedes aegypti (Diptera: Culicidae). Journal of Arthropod-Borne Diseases 10:253–258

    Google Scholar 

  • Amos, B., Aurrecoechea, C., Barba, M., Barreto, A., Basenko, Evelina Y., Bażant, W., Belnap, R., Blevins, A. S., Böhme, U., Brestelli, J., Brunk, B. P., Caddick, M., Callan, D., Campbell, L., Christensen, Mikkel B., Christophides, George K., Crouch, K., Davis, K., Debarry, J., Doherty, R., Duan, Y., Dunn, M., Falke, D., Fisher, S., Flicek, P., Fox, B., Gajria, B., Giraldo-Calderón, G. I., Harb, O. S., Harper, E., Hertz-Fowler, C., Hickman, Mark J., Howington, C., Hu, S., Humphrey, J., Iodice, J., Jones, A., Judkins, J., Kelly, S. A., Kissinger, J. C., Kwon, D. K., Lamoureux, K., Lawson, D., Li, W., Lies, K., Lodha, D., Long, J., Maccallum, R. M., Maslen, G., Mcdowell, M. A., Nabrzyski, J., Roos, D. S., Rund, S. S. C., Schulman, Stephanie W., Shanmugasundram, A., Sitnik, V., Spruill, D., Starns, D., Stoeckert, Christian J., JR., Tomko, S. S., Wang, H., Warrenfeltz, S., Wieck, R., Wilkinson, P. A., Xu, L. & Zheng, J. 2021. VEuPathDB: the eukaryotic pathogen, vector and host bioinformatics resource center. Nucleic Acids Research.

  • Anderson EJ, Stow CA, Gronewold AD, Mason LA, McCormick MJ, Qian SS, Ruberg SA, Beadle K, Constant SA, Hawley N (2021) Seasonal overturn and stratification changes drive deep-water warming in one of Earth’s largest lakes. Nature Communications 12:1688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andreadis TG (2012) The contribution of Culex pipiens complex mosquitoes to transmission and persistence of West Nile virus in North America. Journal of the American Mosquito Control Association 28:137–151

    Article  PubMed  Google Scholar 

  • Angradi TR, Bartsch WM, Trebitz AS, Brady VJ, Launspach JJ (2017) A depth-adjusted ambient distribution approach for setting numeric removal targets for a Great Lakes Area of Concern beneficial use impairment: Degraded benthos. Journal of Great Lakes Research 43:108–120

    Article  PubMed  PubMed Central  Google Scholar 

  • Assani AA, Landry R, Azouaoui O, Massicotte P, Gratton D (2016) Comparison of the Characteristics (Frequency and Timing) of Drought and Wetness Indices of Annual Mean Water Levels in the Five North American Great Lakes. Water Resources Management 30:359–373

    Article  Google Scholar 

  • Barrera R, Navarro JC, Mora JD, Domínguez D, González J (1995) Public service deficiencies and Aedes aegypti breeding sites in Venezuela. Bull Pan Am Health Organ 29:193–205

    CAS  PubMed  Google Scholar 

  • Bartlett-Healy K, Healy SP, Hamilton GC (2011) A Model to Predict Evaporation Rates in Habitats Used by Container-Dwelling Mosquitoes. Journal of Medical Entomology 48:712–716

    Article  PubMed  Google Scholar 

  • Centers for Disease Control and Prevention (CDC) 2017. Surveillance and Control of Aedes aegypti and Aedes albopictus in the United States [Online]. Available: https://www.cdc.gov/chikungunya/resources/vector-control.html [Accessed Dec 02 2022].

  • Centers For Disease Control and Prevention (CDC) 2021. ArboNET, Arboviral Diseases Branch. West Nile Virus: Final Cumulative Maps & Data for 1999–2020 [Online]. Available: https://www.cdc.gov/westnile/statsmaps/cumMapsData.html#five [Accessed Dec 15 2022].

  • Cook BI, Mankin JS, Anchukaitis KJ (2018) Climate Change and Drought: From Past to Future. Current Climate Change Reports 4:164–179

    Article  Google Scholar 

  • Danard M, Munro A, Murty T (2003) Storm surge hazard in Canada. Natural Hazards 28:407–431

    Article  Google Scholar 

  • Diagne, C., Leroy, B., Vaissière, A.-C., Gozlan, R. E., Roiz, D., Jarić, I., Salles, J.-M., Bradshaw, C. J. A. & Courchamp, F. 2021. High and rising economic costs of biological invasions worldwide. Nature.

  • Driedger AGJ, Durr HH, Mitchell K, van Cappellen P (2015) Plastic debris in the Laurentian Great Lakes: A review. Journal of Great Lakes Research 41:9–19

    Article  CAS  Google Scholar 

  • Epstein PR, Defilippo C (2001) West Nile Virus and Drought. Global Change and Human Health 2:105–107

    Article  Google Scholar 

  • Fonseca DM, Keyghobadi N, Malcolm CA, Mehmet C, Schaffner F, Mogi M, Fleischer RC, Wilkerson RC (2004) Emerging vectors in the Culex pipiens complex. Science 303:1535–1538

    Article  CAS  PubMed  Google Scholar 

  • Hamer GL, Kitron UD, Brawn JD, Loss SR, Ruiz MO, Goldberg TL, Walker ED (2008) Culex pipiens (Diptera : Culicidae): A bridge vector of West Nile virus to humans. Journal of Medical Entomology 45:125–128

    Article  PubMed  Google Scholar 

  • Hartig JH, Thomas RL (1988) Development of plans to restore degraded areas in the Great Lakes. Environmental Management 12:327–347

    Article  CAS  Google Scholar 

  • Hartig JH, Krantzberg G, Alsip P (2020) Thirty-five years of restoring Great Lakes Areas of Concern: Gradual progress, hopeful future. Journal of Great Lakes Research 46:429–442

    Article  Google Scholar 

  • Hoellein TJ, Westhoven M, Lyandres O, Cross J (2015) Abundance and environmental drivers of anthropogenic litter on 5 Lake Michigan beaches: A study facilitated by citizen science data collection. Journal of Great Lakes Research 41:78–86

    Article  Google Scholar 

  • IPCC (2018) Summary for Policymakers. Special Report: Global Warming of 1:5C

    Google Scholar 

  • Irwin P, Paskewitz S (2009) Investigation of fathead minnows (Pimephales promelas) as a biological control agent of Culex mosquitoes under laboratory and field conditions. Journal of the American Mosquito Control Association 25:301–309

    Article  PubMed  Google Scholar 

  • Johnson BJ, Sukhdeo MVK (2013) Drought-Induced Amplification of Local and Regional West Nile Virus Infection Rates in New Jersey. Journal of Medical Entomology 50:195–204

    Article  CAS  PubMed  Google Scholar 

  • Juliano SA (2009) Species Interactions Among Larval Mosquitoes: Context Dependence Across Habitat Gradients. Annual Review of Entomology 54:37–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan, S. U., Ogden, N. H., Fazil, A. A., Gachon, P. H., Dueymes, G. U., Greer, A. L. & NG, V. 2020. Current and Projected Distributions of Aedes aegypti and Ae. albopictus in Canada and the US. Environmental Health Perspectives, 128.

  • Knight RL, Walton WE, O’Meara GF, Reisen WK, Wass R (2003) Strategies for effective mosquito control in constructed treatment wetlands. Ecological Engineering 21:211–232

    Article  Google Scholar 

  • Kramer LD, Styer LM, Ebel GD (2008) A global perspective on the epidemiology of West Nile virus. Annual Review of Entomology 53:61–81

    Article  CAS  PubMed  Google Scholar 

  • Krumholz, L. A. 1944. Northward Acclimatization of the Western Mosquitofish, Gambusia affinis affinis. Copeia, 1944–2.

  • Krumholz, L. A. 1948. The Mosquitofish, Gambusia, Established in the Great Lakes Region. Copeia, 1948–2.

  • Kumar R, Muhid P, Dahms HU, Tseng LC, Hwang JS (2008) Potential of three aquatic predators to control mosquitoes in the presence of alternative prey: a comparative experimental assessment. Marine and Freshwater Research 59:817–835

    Article  Google Scholar 

  • Marcantonio, M., Rizzoli, A., Metz, M., Rosa, R., Marini, G., Chadwick, E. & Neteler, M. 2015. Identifying the Environmental Conditions Favouring West Nile Virus Outbreaks in Europe. Plos One, 10.

  • Matsumoto K, Tokos KS, Rippke J (2019) Climate projection of Lake Superior under a future warming scenario. Journal of Limnology 78:296–309

    Article  Google Scholar 

  • Mills EL, Leach JH, Carlton JT, Secor CL (1993) Exotic Species in the Great Lakes: A History of Biotic Crises and Anthropogenic Introductions. Journal of Great Lakes Research 19:1–54

    Article  Google Scholar 

  • Nico, L., Fuller, P., Jacobs, G., Cannister, M., Larson, J., Fusaro, A., Makled, T. H. & Neilson, M. E. 2022. Gambusia affinis (Baird and Girard, 1853): U.S. Geological Survey, Nonindigenous Aquatic Species Database, Gainesville, FL, and NOAA Great Lakes Aquatic Nonindigenous Species Information System, Ann Arbor, MI [Online]. Available: https://nas.er.usgs.gov/queries/greatlakes/FactSheet.aspx?Species_ID=846 [Accessed 4/6/2022 2022].

  • Page LM, Burr BM (2011) Peterson field guide to freshwater fishes of North America north of Mexico. Boston: Houghton Mifflin Harcourt

    Google Scholar 

  • Paull, S. H., Horton, D. E., Ashfaq, M., Rastogi, D., Kramer, L. D., Diffenbaugh, N. S. & Kilpatrick, A. M. 2017. Drought and immunity determine the intensity of West Nile virus epidemics and climate change impacts. Proceedings of the Royal Society B-Biological Sciences, 284.

  • Peters, R. H. 1983. Ingestion. In: Beck, E., Birks, H. J. B. & Connor, E. F. (eds.) The ecological implications of body size. Cambridge: Cambridge University Press.

  • Pyke GH (2008) Plague Minnow or Mosquito Fish? A Review of the Biology and Impacts of Introduced Gambusia Species. Annual Review of Ecology Evolution and Systematics 39:171–191

    Article  Google Scholar 

  • Ramlee, S., Norma-Rashid & Mohd, S. A. 2022. Odonata nymphs as potential biocontrol agent of mosquito larvae in Malaysia. Southeast Asian Journal of Tropical Medicine and Public Health, 53, 426-435

  • Roehr, B. 2012. US hit by massive West Nile virus outbreak centred around Texas. British Medical Journal, 345.

  • Ruiz, M. O., Walker, E. D., Foster, E. S., Haramis, L. D. & Kitron, U. D. 2007. Association of West Nile virus illness and urban landscapes in Chicago and Detroit. International Journal of Health Geographics, 6.

  • Russell, M. C., Herzog, C. M., Gajewski, Z., Ramsay, C., EL Moustaid, F., Evans, M. V., Desai, T., Gottdenker, N. L., Hermann, S. L., Power, A. G. & McCall, A. C. 2022. Both consumptive and non-consumptive effects of predators impact mosquito populations and have implications for disease transmission. eLife, 11.

  • Ryan, S. J., Carlson, C. J., Mordecai, E. A. & Johnson, L. R. 2019. Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. Plos Neglected Tropical Diseases, 13.

  • Shaman J, Day JF, Stieglitz M (2005) Drought-induced amplification and epidemic transmission of West Nile Virus in southern Florida. Journal of Medical Entomology 42:134–141

    Article  PubMed  Google Scholar 

  • Sierszen ME, Morrice JA, Trebitz AS, Hoffman JC (2012) A review of selected ecosystem services provided by coastal wetlands of the Laurentian Great Lakes. Aquatic Ecosystem Health & Management 15:92–106

    Article  Google Scholar 

  • Slawsky, E. D., Hoffman, J. C., Cowan, K. N. & Rappazzo, K. M. 2022. Beneficial Use Impairments, Degradation of Aesthetics, and Human Health: A Review. International Journal of Environmental Research and Public Health, 19.

  • Steinman AD, Cardinale BJ, Munns WR, Ogdahl ME, Allan JD, Angadi T, Bartlett S, Brauman K, Byappanahalli M, Doss M, Dupont D, Johns A, Kashian D, Lupi F, McIntyre P, Miller T, Moore M, Muenich RL, Poudel R, Price J, Provencher B, Rea A, Read J, Renzetti S, Sohngen B, Washburn E (2017) Ecosystem services in the Great Lakes. Journal of Great Lakes Research 43:161–168

    Article  PubMed  PubMed Central  Google Scholar 

  • Trebitz AS, Hoffman JC (2015) Coastal Wetland Support of Great Lakes Fisheries: Progress from Concept to Quantification. Transactions of the American Fisheries Society 144:352–372

    Article  Google Scholar 

  • Uelmen, J. A., Lamcyzk, B., Irwin, P., Bartlett, D., Stone, C., Mackay, A., A., A.-B., Ryan, S. J., Mutebi, J. P., Hamer, G. L., Fritz, M. & Smith, R. L. 2023. Human biting mosquitoes and implications for West Nile virus transmission. Parasites & Vectors, 16.

  • Vincent AES, Hoellein TJ (2017) Anthropogenic Litter Abundance and Accumulation Rates Point to Seasonal Litter Sources on a Great Lakes Beach. Journal of Contemporary Water Research & Education 160:72–84

    Article  Google Scholar 

  • Vincent A, Drag N, Lyandres O, Neville S, Hoellein T (2017) Citizen science datasets reveal drivers of spatial and temporal variation for anthropogenic litter on Great Lakes beaches. Science of the Total Environment 577:105–112

    Article  CAS  PubMed  Google Scholar 

  • Walton WE, Workman PD (1998) Effect of marsh design on the abundance of mosquitoes in experimental constructed wetlands in southern California. Journal of the American Mosquito Control Association 14:95–107

    CAS  PubMed  Google Scholar 

  • Walton WE, Popko DA, van Dam AR, Merrill A (2013) Distribution of Culex Species in Vegetation Bands of a Constructed Wetland Undergoing Integrated Mosquito Management. Journal of the American Mosquito Control Association 29:69–73

    Article  PubMed  Google Scholar 

  • Watchorn RT, Maechtle T, Fedy BC (2018) Assessing the efficacy of fathead minnows (Pimephales promelas) for mosquito control. Plos One 13:e0194304

    Article  PubMed  PubMed Central  Google Scholar 

  • Wattigney WA, Irvin-Barnwell E, Li Z, Davis SI, Manente S, Maqsood J, Scher D, Messing R, Schuldt N, Hwang SA, Aldous KM, Lewis-Michl EL, Ragin-Wilson A (2019) Biomonitoring programs in Michigan, Minnesota and New York to assess human exposure to Great Lakes contaminants. Int J Hyg Environ Health 222:125–135

    Article  CAS  PubMed  Google Scholar 

  • Williams KC, Hoffman JC (2020) Remediation to Restoration to Revitalization: Engaging Communities to Support Ecosystem-Based Management and Improve Human Wellbeing at Clean-up Sites. In: O’Higgins TG, Lago M, Dewitt TH (eds) Ecosystem-Based Management, Ecosystem Services and Aquatic Biodiversity : Theory, Tools and Applications Cham: Springer

    Google Scholar 

Download references

Acknowledgements

MCR was supported by an appointment to the Research Participation Program for the US Environmental Protection Agency, Office of Research and Development, administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the US Department of Energy and EPA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie C. Russell.

Ethics declarations

Conflict of interest

The views expressed in this article are those of the authors and do not necessarily represent the views or policies of the US Environmental Protection Agency.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Russell, M.C., Rappazzo, K.M. & Hoffman, J.C. Ecological Degradation and the Risk of Mosquito-Borne Disease in the Great Lakes Basin. EcoHealth 20, 150–155 (2023). https://doi.org/10.1007/s10393-023-01646-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10393-023-01646-7

Navigation