Skip to main content
Log in

Augmented resting beat-to-beat blood pressure variability in patients with chronic kidney disease

  • Research Article
  • Published:
Clinical Autonomic Research Aims and scope Submit manuscript

Abstract

Purpose

Our aim was to test the hypothesis that patients with chronic kidney disease (CKD) would exhibit augmented resting beat-to-beat blood pressure variability (BPV) that is associated with poor clinical outcomes independent of mean blood pressure (BP). In addition, since the arterial baroreflex plays a critical role in beat-to-beat BP regulation, we further hypothesized that an impaired baroreflex control would be associated with an augmented resting beat-to-beat BPV.

Methods

In 25 sedentary patients with CKD stages III–IV (62 ± 9 years) and 20 controls (57 ± 10 years), resting beat-to-beat BP (finger photoplethysmography) and heart rate (electrocardiography) were continuously measured for 10 min. We calculated the standard deviation (SD), average real variability (ARV) and other indices of BPV. The sequence technique was used to estimate spontaneous cardiac baroreflex sensitivity.

Results

Compared with controls (CON), the CKD group had significantly increased resting BPV. The ARV (2.2 ± 0.6 versus 1.6 ± 0.5 mmHg, P < 0.001; 1.6 ± 0.7 versus 1.3 ± 0.3 mmHg, P = 0.039; 1.4 ± 0.5 versus 1.0 ± 0.2 mmHg, P < 0.001) of systolic, diastolic and mean BP, respectively, was increased in CKD versus controls. Other traditional measures of variability showed similar results. The cardiac baroreflex sensitivity was lower in CKD compared with controls (CKD: 8.4 ± 4.5 ms/mmHg versus CON: 14.0 ± 8.2 ms/mmHg, P = 0.008). In addition, cardiac baroreflex sensitivity was negatively associated with BPV [systolic blood pressure (SBP) ARV; r = −0.44, P = 0.003].

Conclusion

In summary, our data demonstrate that patients with CKD have augmented beat-to-beat BPV and lower cardiac baroreflex sensitivity. BPV and cardiac baroreflex sensitivity were negatively correlated in this cohort. These findings may further our understanding about cardiovascular dysregulation observed in patients with CKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Amann K, Koch A, Hofstetter J, Gross ML, Haas C, Orth SR, Ehmke H, Rump LC, Ritz E (2001) Glomerulosclerosis and progression: effect of subantihypertensive doses of alpha and beta blockers. Kidney Int 60:1309–1323

    Article  CAS  PubMed  Google Scholar 

  2. Bakkar NZ, El-Yazbi AF, Zouein FA, Fares SA (2021) Beat-to-beat blood pressure variability: an early predictor of disease and cardiovascular risk. J Hypertens 39:830–845

    Article  CAS  PubMed  Google Scholar 

  3. Caminiti G, Iellamo F, Mancuso A, Cerrito A, Montano M, Manzi V (2021) Effects of 12 weeks of aerobic versus combined aerobic plus resistance exercise training on short-term blood pressure variability in patients with hypertension. J Appl Physiol 130:1085–1092

    Article  PubMed  Google Scholar 

  4. Dawson SL, Manktelow BN, Robinson TG, Panerai RB, Potter JF (2000) Which parameters of beat-to-beat blood pressure and variability best predict early outcome after acute ischemic stroke? Stroke 31:463–468

    Article  CAS  PubMed  Google Scholar 

  5. Floras JS, Hassan MO, Jones JV, Osikowska BA, Sever PS, Sleight P (1988) Factors influencing blood pressure and heart rate variability in hypertensive humans. Hypertension 11:273–281

    Article  CAS  PubMed  Google Scholar 

  6. Grassi G, Biffi A, Seravalle G, Bertoli S, Airoldi F, Corrao G, Pisano A, Mallamaci F, Mancia G, Zoccali C (2021) Sympathetic nerve traffic overactivity in chronic kidney disease: a systematic review and meta-analysis. J Hypertens 39:408–416

    Article  CAS  PubMed  Google Scholar 

  7. Hart EC, Charkoudian N, Wallin BG, Curry TB, Eisenach J, Joyner MJ (2011) Sex and ageing differences in resting arterial pressure regulation: the role of the β-adrenergic receptors. J Physiol 589:5285–5297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jeong JH, Fonkoue IT, Quyyumi AA, DaCosta D, Park J (2020) Nocturnal blood pressure is associated with sympathetic nerve activity in patients with chronic kidney disease. Physiol Rep 8:e14602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Johansson M, Gao SA, Friberg P, Annerstedt M, Bergström G, Carlström J, Ivarsson T, Jensen G, Ljungman S, Mathillas O, Nielsen FD, Strömbom U (2005) Reduced baroreflex effectiveness index in hypertensive patients with chronic renal failure. Am J Hypertens 18:995–1000

  10. Katulka EK, Hirt AE, Kirkman DL, Edwards DG, Witman MAH (2019) Altered vascular function in chronic kidney disease: evidence from passive leg movement. Physiol Rep 7:e14075

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lal C, Kaur M, Jaryal AK, Deepak KK, Bhowmik D, Agarwal SK (2017) Reduced baroreflex sensitivity, decreased heart rate variability with increased arterial stiffness in predialysis. Indian J Nephrol 27:446–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lanfranchi PA, Somers VK (2002) Arterial baroreflex function and cardiovascular variability: interactions and implications. Am J Physiol Regul Integr Comp Physiol 283:R815-826

    Article  PubMed  Google Scholar 

  13. Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, Kusek JW, Van Lente F, Epidemiology CKD, C, (2006) Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med 145:247–254

    Article  CAS  PubMed  Google Scholar 

  14. Ligtenberg G, Blankestijn PJ, Oey PL, Klein IH, Dijkhorst-Oei LT, Boomsma F, Wieneke GH, van Huffelen AC, Koomans HA (1999) Reduction of sympathetic hyperactivity by enalapril in patients with chronic renal failure. N Engl J Med 340:1321–1328

    Article  CAS  PubMed  Google Scholar 

  15. Mancia G, Parati G, Pomidossi G, Casadei R, Di Rienzo M, Zanchetti A (1986) Arterial baroreflexes and blood pressure and heart rate variabilities in humans. Hypertension 8:147–153

    Article  CAS  PubMed  Google Scholar 

  16. Martinka P, Fielitz J, Patzak A, Regitz-Zagrosek V, Persson PB, Stauss HM (2005) Mechanisms of blood pressure variability-induced cardiac hypertrophy and dysfunction in mice with impaired baroreflex. Am J Physiol Regul Integr Comp Physiol 288:R767-776

    Article  CAS  PubMed  Google Scholar 

  17. Masuo K, Lambert GW, Esler MD, Rakugi H, Ogihara T, Schlaich MP (2010) The role of sympathetic nervous activity in renal injury and end-stage renal disease. Hypertens Res 33:521–528

    Article  CAS  PubMed  Google Scholar 

  18. Mena L, Pintos S, Queipo NV, Aizpúrua JA, Maestre G, Sulbarán T (2005) A reliable index for the prognostic significance of blood pressure variability. J Hypertens 23:505–511

    Article  CAS  PubMed  Google Scholar 

  19. Miao CY, Su DF (2002) The importance of blood pressure variability in rat aortic and left ventricular hypertrophy produced by sinoaortic denervation. J Hypertens 20:1865–1872

    Article  CAS  PubMed  Google Scholar 

  20. Miao CY, Xie HH, Zhan LS, Su DF (2006) Blood pressure variability is more important than blood pressure level in determination of end-organ damage in rats. J Hypertens 24:1125–1135

    Article  CAS  PubMed  Google Scholar 

  21. Mulè G, Calcaterra I, Costanzo M, Geraci G, Guarino L, Foraci AC, Vario MG, Cerasola G, Cottone S (2015) Relationship between short-term blood pressure variability and subclinical renal damage in essential hypertensive patients. J Clin Hypertens (Greenwich) 17:473–480

    Article  PubMed  Google Scholar 

  22. Muntner P, Lewis CE, Diaz KM, Carson AP, Kim Y, Calhoun D, Yano Y, Viera AJ, Shimbo D (2015) Racial differences in abnormal ambulatory blood pressure monitoring measures: results from the coronary artery risk development in young adults (CARDIA) study. Am J Hypertens 28:640–648

    Article  PubMed  Google Scholar 

  23. O'Brien MW, Nardone M, Foster M, Coovadia Y, Usselman CW, Taylor CE, Millar PJ, Kimmerly DS (2023) Higher sympathetic transduction is independently associated with greater very short-term diastolic blood pressure variability in young healthy males and females. Clin Auton Res 2:2

  24. O’Brien MW, Ramsay DJ, O’Neill CD, Petterson JL, Dogra S, Mekary S, Kimmerly DS (2021) Aerobic fitness is inversely associated with neurohemodynamic transduction and blood pressure variability in older adults. Geroscience 43:2737–2748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Olbers J, Gille A, Ljungman P, Rosenqvist M, Östergren J, Witt N (2018) High beat-to-beat blood pressure variability in atrial fibrillation compared to sinus rhythm. Blood Press 27:249–255

    Article  PubMed  Google Scholar 

  26. Ozawa M, Tamura K, Iwatsubo K, Matsushita K, Sakai M, Tsurumi-Ikeya Y, Azuma K, Shigenaga A, Okano Y, Masuda S, Wakui H, Ishigami T, Umemura S (2008) Ambulatory blood pressure variability is increased in diabetic hypertensives. Clin Exp Hypertens 30:213–224

    Article  PubMed  Google Scholar 

  27. Pal A, Martinez F, Aguila AP, Akey MA, Chatterjee R, Conserman MGE, Aysola RS, Henderson LA, Macey PM (2021) Beat-to-beat blood pressure variability in patients with obstructive sleep apnea. J Clin Sleep Med 17:381–392

    Article  PubMed  PubMed Central  Google Scholar 

  28. Parati G, Di Rienzo M, Mancia G (2000) How to measure baroreflex sensitivity: from the cardiovascular laboratory to daily life. J Hypertens 18:7–19

    Article  CAS  PubMed  Google Scholar 

  29. Parati G, Di Rienzo M, Mancia G (2001) Dynamic modulation of baroreflex sensitivity in health and disease. Ann N Y Acad Sci 940:469–487

    Article  CAS  PubMed  Google Scholar 

  30. Parati G, Ochoa JE, Bilo G (2012) Blood pressure variability, cardiovascular risk, and risk for renal disease progression. Curr Hypertens Rep 14:421–431

    Article  PubMed  Google Scholar 

  31. Parati G, Ochoa JE, Lombardi C, Bilo G (2013) Assessment and management of blood-pressure variability. Nat Rev Cardiol 10:143–155

    Article  PubMed  Google Scholar 

  32. Park J (2012) Cardiovascular risk in chronic kidney disease: role of the sympathetic nervous system. Cardiol Res Pract 2012:319432

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rubinger D, Backenroth R, Sapoznikov D (2009) Restoration of baroreflex function in patients with end-stage renal disease after renal transplantation. Nephrol Dial Transplant 24:1305–1313

    Article  PubMed  Google Scholar 

  34. Sabino-Carvalho JL, Cartafina RA, Guimarães GM, Brandão PRP, Lang JA, Vianna LC (2020) Baroreflex function in Parkinson’s disease: insights from the modified-Oxford technique. J Neurophysiol 124:1144–1151

    Article  CAS  PubMed  Google Scholar 

  35. Sarafidis PA, Ruilope LM, Loutradis C, Gorostidi M, de la Sierra A, de la Cruz JJ, Vinyoles E, Divisón-Garrote JA, Segura J, Banegas JR (2018) Blood pressure variability increases with advancing chronic kidney disease stage: a cross-sectional analysis of 16 546 hypertensive patients. J Hypertens 36:1076–1085

    Article  CAS  PubMed  Google Scholar 

  36. Sprick JD, Jeong J, Sabino-Carvalho JL, Li S, Park J (2023) Neurocirculatory regulation and adaptations to exercise in chronic kidney disease. Am J Physiol Heart Circ Physiol 324:H843–H855

    Article  CAS  PubMed  Google Scholar 

  37. Sprick JD, Morison DL, Stein CM, Li Y, Paranjape S, Fonkoue IT, DaCosta DR, Park J (2019) Vascular α(1)-adrenergic sensitivity is enhanced in chronic kidney disease. Am J Physiol Regul Integr Comp Physiol 317:R485-r490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Teixeira AL, Nardone M, Samora M, Fernandes IA, Ramos PS, Sabino-Carvalho JL, Ricardo DR, Millar PJ, Vianna LC (2022) Potentiation of GABAergic synaptic transmission by diazepam acutely increases resting beat-to-beat blood pressure variability in young adults. Am J Physiol Regul Integr Comp Physiol 322:R501-r510

    Article  CAS  PubMed  Google Scholar 

  39. Theodorakopoulou MP, Alexandrou ME, Karagiannidis AG, Geladari V, Polychronidou G, Papagianni A, Sarafidis P (2023) Effect of patient gender on short-term blood pressure variability in hemodialysis patients. J Hum Hypertens 37:519–523

    Article  CAS  PubMed  Google Scholar 

  40. Tinucci T, Abrahão SB, Santello JL, Mion D Jr (2001) Mild chronic renal insufficiency induces sympathetic overactivity. J Hum Hypertens 15:401–406

    Article  CAS  PubMed  Google Scholar 

  41. Watso JC, Robinson AT, Babcock MC, Migdal KU, Wenner MM, Stocker SD, Farquhar WB (2020) Short-term water deprivation does not increase blood pressure variability or impair neurovascular function in healthy young adults. Am J Physiol Regul Integr Comp Physiol 318:R112-r121

    Article  CAS  PubMed  Google Scholar 

  42. Webb AJS, Lawson A, Wartolowska K, Mazzucco S, Rothwell PM (2021) Progression of beat-to-beat blood pressure variability despite best medical management. Hypertension 77:193–201

    Article  CAS  PubMed  Google Scholar 

  43. Webb AJS, Mazzucco S, Li L, Rothwell PM (2018) Prognostic significance of blood pressure variability on beat-to-beat monitoring after transient ischemic attack and stroke. Stroke 49:62–67

    Article  PubMed  Google Scholar 

  44. Wei FF, Li Y, Zhang L, Xu TY, Ding FH, Wang JG, Staessen JA (2014) Beat-to-beat, reading-to-reading, and day-to-day blood pressure variability in relation to organ damage in untreated Chinese. Hypertension 63:790–796

    Article  CAS  PubMed  Google Scholar 

  45. Xia Y, Liu X, Wu D, Xiong H, Ren L, Xu L, Wu W, Zhang H (2017) Influence of beat-to-beat blood pressure variability on vascular elasticity in hypertensive population. Sci Rep 7:8394

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yang L, Li J, Wei W, Pu Y, Zhang L, Cui T, Ma L, Wang B, Zhao Y, Fu P (2023) Blood pressure variability and the progression of chronic kidney disease: a systematic review and meta-analysis. J Gen Intern Med 38:1272–1281

    Article  PubMed  Google Scholar 

  47. Young BE, Kaur J, Vranish JR, Stephens BY, Barbosa TC, Cloud JN, Wang J, Keller DM, Fadel PJ (2020) Augmented resting beat-to-beat blood pressure variability in young, healthy, non-Hispanic black men. Exp Physiol 105:1102–1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Supported by NIH R01HL135183; NIH R33AT10457; NIH NCATS KL2TR002381; and VA Merit I01CX001065.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeanie Park.

Ethics declarations

Conflict of interest

No conflicts of interest, financial or otherwise, are declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabino-Carvalho, J.L., Jeong, J., Sprick, J. et al. Augmented resting beat-to-beat blood pressure variability in patients with chronic kidney disease. Clin Auton Res 33, 705–714 (2023). https://doi.org/10.1007/s10286-023-00979-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10286-023-00979-1

Keywords

Navigation