Skip to main content

Advertisement

Log in

Baroreflex-sympathoneural dysfunction characterizes at-risk individuals with preclinical central Lewy body diseases

  • Research Article
  • Published:
Clinical Autonomic Research Aims and scope Submit manuscript

A Correction to this article was published on 12 January 2023

This article has been updated

Abstract

Purpose

In central Lewy body diseases (LBDs) such as Parkinson’s disease (PD) and dementia with Lewy bodies (DLB), by the time parkinsonism or cognitive dysfunction becomes manifest, substantial central neurodegeneration has already occurred. Cardiovascular autonomic biomarkers might detect preclinical central LBDs in at-risk individuals, enabling possibly effective disease-modifying treatment.

Methods

In the prospective, longitudinal PDRisk study, 59 participants provided information about family history of PD, olfactory dysfunction, dream enactment behavior, and orthostatic intolerance or hypotension at a protocol-specific website and were screened as outpatients. Thirty-four had three or more confirmed risk factors and were followed until PD was diagnosed or up to 7.5 years. Dependent measures included assessments of baroreflex-sympathoneural function, via the blood pressure recovery time (PRT) after release of the Valsalva maneuver and baroreflex areas; and baroreflex-cardiovagal function, via heart rate variability in the time and frequency domains and Valsalva baroslopes. Data were compared from groups with or without a subsequent diagnosis of a central LBD (LBD+, N = 9; LBD−, N = 25) and PDRisk participants with fewer than three confirmed risk factors (PDRisk−, N = 25).

Results

The LBD+ group had larger orthostatic falls in systolic blood pressure than did the LBD− and PDRisk− groups (p < 0.0001 each). The LBD+ group had increased PRTs (p = 0.0114 versus LBD−, p = 0.0094 versus PDRisk−) and baroreflex areas after the Valsalva maneuver (p = 0.0225 versus LBD−, p = 0.0028 versus PDRisk−), whereas the groups did not differ in indices of baroreflex-cardiovagal function.

Conclusion

Orthostatic hypotension and baroreflex-sympathoneural dysfunction characterize at-risk individuals who go on to be diagnosed with a central LBD during longitudinal follow-up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data spreadsheets from this study are available from the Corresponding Author upon written request.

Change history

References

  1. Blaho A, Sutovsky S, Valkovic P, Siarnik P, Sykora M, Turcani P (2017) Decreased baroreflex sensitivity in Parkinson’s disease is associated with orthostatic hypotension. J Neurol Sci 377:207–211

    Article  PubMed  Google Scholar 

  2. Boeve BF, Silber MH, Ferman TJ (2004) REM sleep behavior disorder in Parkinson’s disease and dementia with Lewy bodies. J Geriatr Psychiatry Neurol 17:146–157

    Article  PubMed  Google Scholar 

  3. Bouhaddi M, Vuillier F, Fortrat JO, Cappelle S, Henriet MT, Rumbach L, Regnard J (2004) Impaired cardiovascular autonomic control in newly and long-term-treated patients with Parkinson’s disease: involvement of l-dopa therapy. Auton Neurosci 116:30–38

    Article  CAS  PubMed  Google Scholar 

  4. Cheshire WP Jr, Goldstein DS (2019) Autonomic uprising: the tilt table test in autonomic medicine. Clin Auton Res 29:215–230

    Article  PubMed  PubMed Central  Google Scholar 

  5. Donadio V, Cortelli P, Elam M, Di Stasi V, Montagna P, Holmberg B, Giannoccaro MP, Bugiardini E, Avoni P, Baruzzi A, Liguori R (2010) Autonomic innervation in multiple system atrophy and pure autonomic failure. J Neurol Neurosurg Psychiatry 81:1327–1335

    Article  CAS  PubMed  Google Scholar 

  6. Fantini ML, Postuma RB, Montplaisir J, Ferini-Strambi L (2006) Olfactory deficit in idiopathic rapid eye movements sleep behavior disorder. Brain Res Bull 70:386–390

    Article  PubMed  Google Scholar 

  7. Fereshtehnejad SM, Romenets SR, Anang JB, Latreille V, Gagnon JF, Postuma RB (2015) New clinical subtypes of Parkinson disease and their longitudinal progression: a prospective cohort comparison with other phenotypes. JAMA Neurol 72:863–873

    Article  PubMed  Google Scholar 

  8. Freeman R, Wieling W, Axelrod FB, Benditt DG, Benarroch E, Biaggioni I, Cheshire WP, Chelimsky T, Cortelli P, Gibbons CH, Goldstein DS, Hainsworth R, Hilz MJ, Jacob G, Kaufmann H, Jordan J, Lipsitz LA, Levine BD, Low PA, Mathias C, Raj SR, Robertson D, Sandroni P, Schatz I, Schondorff R, Stewart JM, van Dijk JG (2011) Consensus statement on the definition of orthostatic hypotension, neurally mediated syncope and the postural tachycardia syndrome. Clin Auton Res 21:69–72

    Article  PubMed  Google Scholar 

  9. Fujishiro H, Frigerio R, Burnett M, Klos KJ, Josephs KA, Delledonne A, Parisi JE, Ahlskog JE, Dickson DW (2008) Cardiac sympathetic denervation correlates with clinical and pathologic stages of Parkinson’s disease. Mov Disord 23:1085–1092

    Article  PubMed  Google Scholar 

  10. Ghebremedhin E, Del Tredici K, Langston JW, Braak H (2009) Diminished tyrosine hydroxylase immunoreactivity in the cardiac conduction system and myocardium in Parkinson’s disease: an anatomical study. Acta Neuropathol 118:777–784

    Article  CAS  PubMed  Google Scholar 

  11. Goldstein DS (2003) Dysautonomia in Parkinson’s disease: neurocardiological abnormalities. Lancet Neurol 2:669–676

    Article  PubMed  Google Scholar 

  12. Goldstein DS, Cheshire WP (2018) Roles of catechol neurochemistry in autonomic function testing. Clin Auton Res 28:273–288

    Article  PubMed  PubMed Central  Google Scholar 

  13. Goldstein DS, Cheshire WP Jr (2017) Beat-to-beat blood pressure and heart rate responses to the Valsalva maneuver. Clin Auton Res 27:361–367

    Article  PubMed  PubMed Central  Google Scholar 

  14. Goldstein DS, Holmes C, Bentho O, Sato T, Moak J, Sharabi Y, Imrich R, Conant S, Eldadah BA (2008) Biomarkers to detect central dopamine deficiency and distinguish Parkinson disease from multiple system atrophy. Parkinsonism Relat Disord 14:600–607

    Article  PubMed  PubMed Central  Google Scholar 

  15. Goldstein DS, Holmes C, Lopez GJ, Wu T, Sharabi Y (2018) Cardiac sympathetic denervation predicts PD in at-risk individuals. Parkinsonism Relat Disord 52:90–93

    Article  PubMed  Google Scholar 

  16. Goldstein DS, Holmes C, Lopez GJ, Wu T, Sharabi Y (2018) Cerebrospinal fluid biomarkers of central dopamine deficiency predict Parkinson’s disease. Parkinsonism Relat Disord 50:108–112

    Article  PubMed  PubMed Central  Google Scholar 

  17. Goldstein DS, Holmes C, Sewell L, Park MY, Sharabi Y (2012) Sympathetic noradrenergic before striatal dopaminergic denervation: relevance to Braak staging of synucleinopathy. Clin Auton Res 22:57–61

    Article  PubMed  Google Scholar 

  18. Goldstein DS, Holmes C, Stuhlmuller JE, Lenders JWM, Kopin IJ (1997) 6-[18F]Fluorodopamine positron emission tomographic scanning in the assessment of cardiac sympathoneural function–studies in normal humans. Clin Auton Res 7:17–29

    Article  CAS  PubMed  Google Scholar 

  19. Goldstein DS, Horwitz D, Keiser HR (1982) Comparison of techniques for measuring baroreflex sensitivity in man. Circulation 66:432–439

    Article  CAS  PubMed  Google Scholar 

  20. Goldstein DS, Isonaka R, Lamotte G, Kaufmann H (2021) Different phenoconversion pathways in pure autonomic failure with versus without Lewy bodies. Clin Auton Res 31:677–684

    Article  PubMed  Google Scholar 

  21. Goldstein DS, Sharabi Y, Karp BI, Bentho O, Saleem A, Pacak K, Eisenhofer G (2007) Cardiac sympathetic denervation preceding motor signs in Parkinson disease. Clin Auton Res 17:118–121

    Article  PubMed  PubMed Central  Google Scholar 

  22. Goldstein DS, Sullivan P, Holmes C, Lamotte G, Lenka A, Sharabi Y (2021) Differential abnormalities of cerebrospinal fluid dopaminergic versus noradrenergic indices in synucleinopathies. J Neurochem 158:554–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gomperts SN (2016) Lewy body dementias: dementia with Lewy bodies and Parkinson disease dementia. Continuum 22:435–463

    PubMed  PubMed Central  Google Scholar 

  24. Heinzel S, Berg D, Gasser T, Chen H, Yao C, Postuma RB, Disease MDSTFotDoPs (2019) Update of the MDS research criteria for prodromal Parkinson’s disease. Mov Disord 34:1464–1470

    Article  PubMed  Google Scholar 

  25. Horsager J, Andersen KB, Knudsen K, Skjaerbaek C, Fedorova TD, Okkels N, Schaeffer E, Bonkat SK, Geday J, Otto M, Sommerauer M, Danielsen EH, Bech E, Kraft J, Munk OL, Hansen SD, Pavese N, Goder R, Brooks DJ, Berg D, Borghammer P (2020) Brain-first versus body-first Parkinson’s disease: a multimodal imaging case-control study. Brain 143:3077–3088

    Article  PubMed  Google Scholar 

  26. Isonaka R, Rosenberg AZ, Sullivan P, Corrales A, Holmes C, Sharabi Y, Goldstein DS (2019) Alpha-synuclein deposition within sympathetic noradrenergic neurons Is associated with myocardial noradrenergic deficiency in neurogenic orthostatic hypotension. Hypertension 73:910–918

    Article  CAS  PubMed  Google Scholar 

  27. Kaufmann H, Norcliffe-Kaufmann L, Palma JA, Biaggioni I, Low PA, Singer W, Goldstein DS, Peltier AC, Shibao CA, Gibbons CH, Freeman R, Robertson D (2017) Natural history of pure autonomic failure: a United States prospective cohort. Ann Neurol 81:287–297

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kim JS, Park HE, Oh YS, Lee SH, Park JW, Son BC, Lee KS (2016) Orthostatic hypotension and cardiac sympathetic denervation in Parkinson disease patients with REM sleep behavioral disorder. J Neurol Sci 362:59–63

    Article  PubMed  Google Scholar 

  29. Lamotte G, Takahashi M, Wu T, Sullivan P, Cherup J, Holmes C, Goldstein DS (2021) Do indices of baroreflex failure and peripheral noradrenergic deficiency predict the magnitude of orthostatic hypotension in Lewy body diseases? Clin Auton Res 31:543–551

    Article  PubMed  Google Scholar 

  30. Linden D, Diehl RR, Berlit P (1997) Sympathetic cardiovascular dysfunction in long-standing idiopathic Parkinson’s disease. Clin Auton Res 7:311–314

    Article  CAS  PubMed  Google Scholar 

  31. McKeith IG, Boeve BF, Dickson DW, Halliday G, Taylor JP, Weintraub D, Aarsland D, Galvin J, Attems J, Ballard CG, Bayston A, Beach TG, Blanc F, Bohnen N, Bonanni L, Bras J, Brundin P, Burn D, Chen-Plotkin A, Duda JE, El-Agnaf O, Feldman H, Ferman TJ, Ffytche D, Fujishiro H, Galasko D, Goldman JG, Gomperts SN, Graff-Radford NR, Honig LS, Iranzo A, Kantarci K, Kaufer D, Kukull W, Lee VMY, Leverenz JB, Lewis S, Lippa C, Lunde A, Masellis M, Masliah E, McLean P, Mollenhauer B, Montine TJ, Moreno E, Mori E, Murray M, O’Brien JT, Orimo S, Postuma RB, Ramaswamy S, Ross OA, Salmon DP, Singleton A, Taylor A, Thomas A, Tiraboschi P, Toledo JB, Trojanowski JQ, Tsuang D, Walker Z, Yamada M, Kosaka K (2017) Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB Consortium. Neurology 89:88–100

    Article  PubMed  PubMed Central  Google Scholar 

  32. Muangpaisan W, Mathews A, Hori H, Seidel D (2011) A systematic review of the worldwide prevalence and incidence of Parkinson’s disease. J Med Assoc Thai 94:749–755

    PubMed  Google Scholar 

  33. O’Leary DD, Kimmerly DS, Cechetto AD, Shoemaker JK (2003) Differential effect of head-up tilt on cardiovagal and sympathetic baroreflex sensitivity in humans. Exp Physiol 88:769–774

    Article  CAS  PubMed  Google Scholar 

  34. Oka H, Mochio S, Onouchi K, Morita M, Yoshioka M, Inoue K (2006) Cardiovascular dysautonomia in de novo Parkinson’s disease. J Neurol Sci 241:59–65

    Article  PubMed  Google Scholar 

  35. Oka H, Morita M, Onouchi K, Yoshioka M, Mochio S, Inoue K (2007) Cardiovascular autonomic dysfunction in dementia with Lewy bodies and Parkinson’s disease. J Neurol Sci 254:72–77

    Article  PubMed  Google Scholar 

  36. Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, Obeso J, Marek K, Litvan I, Lang AE, Halliday G, Goetz CG, Gasser T, Dubois B, Chan P, Bloem BR, Adler CH, Deuschl G (2015) MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord 30:1591–1601

    Article  PubMed  Google Scholar 

  37. Postuma RB, Gagnon JF, Pelletier A, Montplaisir J (2013) Prodromal autonomic symptoms and signs in Parkinson’s disease and dementia with Lewy bodies. Mov Disord 28:597–604

    Article  PubMed  Google Scholar 

  38. Postuma RB, Iranzo A, Hogl B, Arnulf I, Ferini-Strambi L, Manni R, Miyamoto T, Oertel W, Dauvilliers Y, Ju YE, Puligheddu M, Sonka K, Pelletier A, Santamaria J, Frauscher B, Leu-Semenescu S, Zucconi M, Terzaghi M, Miyamoto M, Unger MM, Carlander B, Fantini ML, Montplaisir JY (2015) Risk factors for neurodegeneration in idiopathic rapid eye movement sleep behavior disorder: a multicenter study. Ann Neurol 77:830–839

    Article  PubMed  PubMed Central  Google Scholar 

  39. Postuma RB, Lanfranchi PA, Blais H, Gagnon JF, Montplaisir JY (2010) Cardiac autonomic dysfunction in idiopathic REM sleep behavior disorder. Mov Disord 25:2304–2310

    Article  PubMed  Google Scholar 

  40. Rahman F, Goldstein DS (2014) Quantitative indices of baroreflex-sympathoneural function. Clin Auton Res 24:103–110

    Article  PubMed  Google Scholar 

  41. Savica R, Boeve BF, Logroscino G (2016) Epidemiology of alpha-synucleinopathies: from Parkinson disease to dementia with Lewy bodies. Handb Clin Neurol 138:153–158

    Article  CAS  PubMed  Google Scholar 

  42. Sayegh ALC, Janzen A, Strzedulla I, Birklein F, Lautenschlager G, Oertel WH, Kramer HH, Best C (2021) Increased muscle sympathetic nerve activity and impaired baroreflex control in isolated REM-sleep behavior disorder. Clin Neurophysiol 132:1537–1542

    Article  PubMed  Google Scholar 

  43. Siderowf A, Jennings D, Eberly S, Oakes D, Hawkins KA, Ascherio A, Stern MB, Marek K, Investigators P (2012) Impaired olfaction and other prodromal features in the Parkinson at-risk syndrome study. Mov Disord 27:406–412

    Article  PubMed  PubMed Central  Google Scholar 

  44. Singer W, Berini SE, Sandroni P, Fealey RD, Coon EA, Suarez MD, Benarroch EE, Low PA (2017) Pure autonomic failure: predictors of conversion to clinical CNS involvement. Neurology 88:1129–1136

    Article  PubMed  PubMed Central  Google Scholar 

  45. Szili-Torok T, Kalman J, Paprika D, Dibo G, Rozsa Z, Rudas L (2001) Depressed baroreflex sensitivity in patients with Alzheimer’s and Parkinson’s disease. Neurobiol Aging 22:435–438

    Article  CAS  PubMed  Google Scholar 

  46. van Lieshout JJ, Wieling W, Wesseling KH, Karemaker JM (1989) Pitfalls in the assessment of cardiovascular reflexes in patients with sympathetic failure but intact vagal control. Clin Sci (Lond) 76:523–528

    Article  PubMed  Google Scholar 

  47. Yin K, Zhou C, Zhu Y, Yin W, Yin L, Liu B, Ren H, Xu Z, Yang X (2022) REM sleep behavioral disorder may be an independent risk factor for orthostatic hypotension in Parkinson’s disease. Aging Clin Exp Res 34:159–166

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The funding organization for this study was the Division of Intramural Research (DIR), NINDS, NIH. The DIR, NINDS, NIH supported the research reported here.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by D.S.G. The first draft of the manuscript was written by D.S.G., and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to David S. Goldstein.

Ethics declarations

Conflict of interest

D.S.G. reports no disclosures. Yehonatan Sharabi reports no disclosures. This is not an industry-sponsored study. The authors declare that they have no conflict of interest.

Ethical approval

Participants in this study gave written informed consent to participate in IRB-approved intramural NINDS protocols. Consent for the PDRisk study was in two forms: electronic at a protocol-specific, IRB-approved website and in writing at the time of evaluation at the NIH Clinical Center. The study is listed in ClinicalTrials.gov (study NCT00775853). For comparison purposes, physiological data were culled from an ongoing database under an IRB-approved secondary research protocol (NIH Clinical Protocol 000490). Data were reviewed from all participants with PD + OH, PD without OH (PD No OH), or PAF or who were healthy volunteers (HVs) studied at the NIH Clinical Center between 1991 and 2022.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 445 KB)

Supplementary file2 (XLSX 89 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goldstein, D.S., Sharabi, Y. Baroreflex-sympathoneural dysfunction characterizes at-risk individuals with preclinical central Lewy body diseases. Clin Auton Res 33, 41–49 (2023). https://doi.org/10.1007/s10286-022-00912-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10286-022-00912-y

Keywords

Navigation