Skip to main content

Advertisement

Log in

Causal inference between rheumatoid arthritis and prostate cancer

  • Research
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

It is unclear if the association between rheumatoid arthritis (RA) and a higher risk of prostate cancer (Pca) reflects a causal relationship. We conducted a meta-analysis and used the Mendelian randomization method (MR) to evaluate the association between RA and Pca risk. A meta-analysis and subgroup analysis of the incidence of Pca in patients with RA was conducted. To determine whether genetically elevated RA levels were causally linked to Pca, two MR samples were employed. To eliminate gender-related bias, we conducted a stratified analysis of the GWAS data for RA by gender, specifically including 140,254 males. Additional MR analysis was also performed to determine potential confounding factors influencing the association between genetically susceptible RA and Pca. In total, 409,950 participants were enrolled in 20 trials to investigate the Pca risk in patients with RA. The meta-analysis suggested that RA was unrelated to the Pca risk (SIR = 1.072, 95% CI, 0.883–1.261). However, a subgroup analysis showed that low smoking rates might increase the Pca risk in patients with RA by 24%. The MR analysis showed that increased genetic susceptibility to RA was related to a high Pca risk (OR = 36.20, 95%CI = 1.24–1053.12, P = 0.037). The causality estimation of MR-Egger, Weighted mode, Simple mode, and Weighted median method were similar in direction and magnitude. Although our meta-analysis found no correlation between RA and Pca risk, MR analyses supported a causal relationship between genetic susceptibility to RA and increased prostate risk. Early attention to Pca risk in patients with RA may be important for improving prognosis and mortality in such patients. Further research is needed to determine the etiology of RA attributed to Pca and its underlying mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

The data of RA in males can be obtained from the Wget command https://broad-ukb-sumstats-us-east-1.s3.amazonaws.com/round2/additive-tsvs/20002_1464.gwas.imputed_v3.male.tsv.bgz or AWS file https://broad-ukb-sumstats-us-east-1.s3.amazonaws.com/round2/additive-tsvs/20002_1464.gwas.imputed_v3.male.tsv.bgz. The datasets GWAS for this study can be found in the GWAS Catalog [https://www.ebi.ac.uk/gwas/]. GWAS ID details can be found in methods or Supplementary Material.

Abbreviations

RA:

Rheumatoid arthritis

Pca:

Prostate cancer

MR:

Mendelian randomization

GWASs:

Genome-wide association studies

MOOSE:

Meta-analysis of observational studies in epidemiology

MeSH:

Medical subject headings

QATSO:

Quality assessment tool for systematic reviews of observational studies

RCTs:

Randomized controlled trials

ACR:

Criteria: American College of Rheumatology criteria

ARA:

Criteria: American Rheumatism Association criteria

SIR:

Standardized incidence rate

OR:

Odds ratio

HR:

Hazard ratio

RR:

Relative risk

CI:

Confidence interval

SNP:

Single nucleotide polymorphism

LD:

Linkage disequilibrium

PRACTICAL:

Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome

GIANT:

Genetic Investigation of Anthropometric Traits consortium

MRC-IEU:

MRC Integrative Epidemiology Unit

IVs:

Instrumental variables

IVW:

Inverse variance-weighted

PRESSO:

Pleiotropy Residual Sum and Outlier

References

  1. Aletaha D, Neogi T, Silman AJ, et al. 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2010;62(9):2569–81. https://doi.org/10.1002/art.27584.

    Article  PubMed  Google Scholar 

  2. Seror R, Mariette X. Malignancy and the risks of biologic therapies: current status. Rheum Dis Clin North Am. 2017;43(1):43–64. https://doi.org/10.1016/j.rdc.2016.09.006.

    Article  PubMed  Google Scholar 

  3. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre A, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018. https://doi.org/10.3322/caac.21492.

    Article  PubMed  Google Scholar 

  4. Barry MJ, Simmons LH. Prevention of prostate cancer morbidity and mortality: primary prevention and early detection. Med Clin North Am. 2017;101(4):787–806. https://doi.org/10.1016/j.mcna.2017.03.009.

    Article  PubMed  Google Scholar 

  5. Thomas E, Brewster DH, Black RJ, Macfarlane GJ. Risk of malignancy among patients with rheumatic conditions. Int J Cancer. 2000;88(3):497–502. https://doi.org/10.1002/1097-0215(20001101)88:3%3c497::AID-IJC27%3e3.0.CO;2-J.

    Article  CAS  PubMed  Google Scholar 

  6. Hellgren K, Smedby KE, Feltelius N, Baecklund E, Askling J. Do rheumatoid arthritis and lymphoma share risk factors?: A comparison of lymphoma and cancer risks before and after diagnosis of rheumatoid arthritis. Arthritis Rheum. 2010;62(5):1252–8. https://doi.org/10.1002/art.27402.

    Article  PubMed  Google Scholar 

  7. Yamada T, Nakajima A, Inoue E, et al. Incidence of malignancy in Japanese patients with rheumatoid arthritis. Rheumatol Int. 2011;31(11):1487–92. https://doi.org/10.1007/s00296-010-1524-0.

    Article  PubMed  Google Scholar 

  8. Hashimoto A, Chiba N, Tsuno H, et al. Incidence of malignancy and the risk of lymphoma in Japanese patients with rheumatoid arthritis compared to the general population. J Rheumatol. 2015;42(4):564–71. https://doi.org/10.3899/jrheum.140533.

    Article  CAS  PubMed  Google Scholar 

  9. Buchbinder R, VanDoornum S, Staples M, Lassere M, March L. Malignancy risk in Australian rheumatoid arthritis patients treated with anti-tumour necrosis factor therapy: analysis of the Australian Rheumatology Association Database (ARAD) prospective cohort study. BMC Musculoskelet Disord. 2015. https://doi.org/10.1186/s12891-015-0772-2.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yu KH, Kuo CF, Huang LH, Huang WK, See LC. Cancer risk in patients with inflammatory systemic autoimmune rheumatic diseases: a nationwide population-based dynamic cohort study in Taiwan. Medicine (Baltimore). 2016;95(18):e3540. https://doi.org/10.1097/MD.0000000000003540.

    Article  CAS  PubMed  Google Scholar 

  11. Pernar CH, Ebot EM, Wilson KM, Mucci LA. The epidemiology of prostate cancer. Cold Spring Harb Perspect Med. 2018;8(12):a030361. https://doi.org/10.1101/cshperspect.a030361.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Emdin CA, Khera AV, Kathiresan S. Mendelian randomization. JAMA. 2017;318(19):1925–6. https://doi.org/10.1001/jama.2017.17219.

    Article  PubMed  Google Scholar 

  13. Smith GD, Ebrahim S. Mendelian randomization: prospects, potentials, and limitations. Int J Epidemiol. 2004;33(1):30–42. https://doi.org/10.1093/ije/dyh132.

    Article  PubMed  Google Scholar 

  14. Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA. 2000;283(15):2008–12. https://doi.org/10.1001/jama.283.15.2008.

    Article  CAS  PubMed  Google Scholar 

  15. Wong WCW, Cheung CSK, Hart GJ. Development of a quality assessment tool for systematic reviews of observational studies (QATSO) of HIV prevalence in men having sex with men and associated risk behaviours. Emerg Themes Epidemiol. 2008;5:23. https://doi.org/10.1186/1742-7622-5-23.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lin L, Chu H, Murad MH, et al. Empirical comparison of publication bias tests in meta-analysis. J Gen Intern Med. 2018;33(8):1260–7. https://doi.org/10.1007/s11606-018-4425-7.

    Article  PubMed  PubMed Central  Google Scholar 

  17. : Data-Field 20002. Accessed May 16, 2023. https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=20002

  18. Fr S, Aa AO, Si B, et al. Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nat Genet. 2018. https://doi.org/10.1038/s41588-018-0142-8.

    Article  Google Scholar 

  19. Berndt SI, Gustafsson S, Mägi R, et al. Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture. Nat Genet. 2013;45(5):501–12. https://doi.org/10.1038/ng.2606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Revez JA, Lin T, Qiao Z, et al. Genome-wide association study identifies 143 loci associated with 25 hydroxyvitamin D concentration. Nat Commun. 2020;11(1):1647. https://doi.org/10.1038/s41467-020-15421-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Burgess S. Sample size and power calculations in Mendelian randomization with a single instrumental variable and a binary outcome. Int J Epidemiol. 2014;43(3):922–9. https://doi.org/10.1093/ije/dyu005.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Burgess S, Dudbridge F, Thompson SG. Combining information on multiple instrumental variables in Mendelian randomization: comparison of allele score and summarized data methods. Stat Med. 2016;35(11):1880–906. https://doi.org/10.1002/sim.6835.

    Article  PubMed  Google Scholar 

  23. Verbanck M, Chen CY, Neale B, Do R. Publisher Correction: detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet. 2018;50(8):1196. https://doi.org/10.1038/s41588-018-0164-2.

    Article  CAS  PubMed  Google Scholar 

  24. Hemani G, Zheng J, Elsworth B, et al. The MR-Base platform supports systematic causal inference across the human phenome. Elife. 2018;7:e34408. https://doi.org/10.7554/eLife.34408.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gridley G, McLaughlin JK, Ekbom A, et al. Incidence of cancer among patients with rheumatoid arthritis. J Natl Cancer Inst. 1993. https://doi.org/10.1093/jnci/85.4.307.

    Article  PubMed  Google Scholar 

  26. Mellemkjaer L, Linet MS, Gridley G, Frisch M, Møller H, Olsen JH. Rheumatoid arthritis and cancer risk. Eur J Cancer. 1996;32A(10):1753–7. https://doi.org/10.1016/0959-8049(96)00210-9.

    Article  CAS  PubMed  Google Scholar 

  27. Cibere J, Sibley J, Haga M. Rheumatoid arthritis and the risk of malignancy. Arthritis Rheum. 1997;40(9):1580–6. https://doi.org/10.1002/art.1780400906.

    Article  CAS  PubMed  Google Scholar 

  28. Askling J, Fored CM, Brandt L, et al. Risks of solid cancers in patients with rheumatoid arthritis and after treatment with tumour necrosis factor antagonists. Ann Rheum Dis. 2005. https://doi.org/10.1136/ard.2004.033993.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Abásolo L, Júdez E, Descalzo MA, et al. Cancer in rheumatoid arthritis: occurrence, mortality, and associated factors in a South European population. Semin Arthritis Rheum. 2008;37(6):388–97. https://doi.org/10.1016/j.semarthrit.2007.08.006.

    Article  PubMed  Google Scholar 

  30. Wolfe F, Michaud K. Biologic treatment of rheumatoid arthritis and the risk of malignancy: analyses from a large US observational study. Arthritis Rheum. 2007;56(9):2886–95. https://doi.org/10.1002/art.22864.

    Article  PubMed  Google Scholar 

  31. Hemminki K, Li X, Sundquist K, Sundquist J, Cancer risk in hospitalized rheumatoid arthritis patients. Rheumatology (Oxford, England). 2008;47(5). doi:https://doi.org/10.1093/rheumatology/ken130

  32. Parikh-Patel A, White RH, Allen M, Cress R. Risk of cancer among rheumatoid arthritis patients in California. Cancer Causes Control : CCC. 2009. https://doi.org/10.1007/s10552-009-9298-y.

    Article  PubMed  Google Scholar 

  33. Chen Y-J, Chang Y-T, Wang C-B. C-Y Wu The risk of cancer in patients with rheumatoid arthritis: a nationwide cohort study in Taiwan. Arthritis Rheum. 2011. https://doi.org/10.1002/art.30134.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Dreyer L, Mellemkjær L, Andersen AR, et al. Incidences of overall and site specific cancers in TNFα inhibitor treated patients with rheumatoid arthritis and other arthritides - a follow-up study from the DANBIO Registry. Ann Rheum Dis. 2013;72(1):79–82. https://doi.org/10.1136/annrheumdis-2012-201969.

    Article  PubMed  Google Scholar 

  35. Mercer LK, Davies R, Galloway JB, et al. Risk of cancer in patients receiving non-biologic disease-modifying therapy for rheumatoid arthritis compared with the UK general population. Rheumatology. 2013;52(1):91–8. https://doi.org/10.1093/rheumatology/kes350.

    Article  PubMed  Google Scholar 

  36. Lim XR, Xiang W, Tan JWL, et al. Incidence and patterns of malignancies in a multi-ethnic cohort of rheumatoid arthritis patients. Int J Rheum Dis. 2019;22(9):1679–85. https://doi.org/10.1111/1756-185X.13655.

    Article  PubMed  Google Scholar 

  37. Lee H. The risk of malignancy in korean patients with rheumatoid arthritis. Yonsei Med J. 2019;60(2):223. https://doi.org/10.3349/ymj.2019.60.2.223.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Km K, Sj M. Prevalence, incidence, and risk factors of malignancy in patients with rheumatoid arthritis: a nationwide cohort study from Korea. Korean J Internal Med. 2021. https://doi.org/10.3904/kjim.2021.146.

    Article  Google Scholar 

  39. Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1997;40(9):1725. https://doi.org/10.1002/art.1780400928.

    Article  CAS  PubMed  Google Scholar 

  40. Alarcón-Segovia D, Pérez-Vázquez ME, Villa AR, Drenkard C, Cabiedes J. Preliminary classification criteria for the antiphospholipid syndrome within systemic lupus erythematosus. Semin Arthritis Rheum. 1992;21(5):275–86. https://doi.org/10.1016/0049-0172(92)90021-5.

    Article  PubMed  Google Scholar 

  41. Tallbacka K, Pettersson T, Pukkala E. Increased incidence of cancer in systemic lupus erythematosus: a Finnish cohort study with more than 25 years of follow-up. Scand J Rheumatol. 2018;47(6):461–4. https://doi.org/10.1080/03009742.2017.1384054.

    Article  CAS  PubMed  Google Scholar 

  42. De Marzo AM, Platz EA, Sutcliffe S, et al. Inflammation in prostate carcinogenesis. Nat Rev Cancer. 2007;7(4):256–69. https://doi.org/10.1038/nrc2090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Madaan S, Abel PD, Chaudhary KS, et al. Cytoplasmic induction and over-expression of cyclooxygenase-2 in human prostate cancer: implications for prevention and treatment. BJU Int. 2000;86(6):736–41. https://doi.org/10.1046/j.1464-410x.2000.00867.x.

    Article  CAS  PubMed  Google Scholar 

  44. Chaudry A, McClinton S, Moffat LE, Wahle KW. Essential fatty acid distribution in the plasma and tissue phospholipids of patients with benign and malignant prostatic disease. Br J Cancer. 1991;64(6):1157–60. https://doi.org/10.1038/bjc.1991.481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Prostaglandin E2 Stimulates the beta-catenin/T cell factor-dependent transcription in colon cancer - PubMed. Accessed June 21, 2022. https://pubmed.ncbi.nlm.nih.gov/15899904/

  46. Mahmud SM, Tanguay S, Bégin LR, Franco EL, Aprikian AG. Non-steroidal anti-inflammatory drug use and prostate cancer in a high-risk population. Eur J Cancer Prev. 2006;15(2):158–64. https://doi.org/10.1097/01.cej.0000197451.02604.25.

    Article  CAS  PubMed  Google Scholar 

  47. Stock DC, Groome PA, Siemens DR, Rohland SL, Song Z. Effects of non-selective non-steroidal anti-inflammatory drugs on the aggressiveness of prostate cancer. Prostate. 2008;68(15):1655–65. https://doi.org/10.1002/pros.20834.

    Article  CAS  PubMed  Google Scholar 

  48. Salinas CA, Kwon EM, FitzGerald LM, et al. Use of aspirin and other nonsteroidal antiinflammatory medications in relation to prostate cancer risk. Am J Epidemiol. 2010;172(5):578–90. https://doi.org/10.1093/aje/kwq175.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Heinrich PC, Behrmann I, Haan S, Hermanns HM, Müller-Newen G, Schaper F. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J. 2003;374(Pt 1):1–20. https://doi.org/10.1042/BJ20030407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Katoh M, Katoh M. STAT3-induced WNT5A signaling loop in embryonic stem cells, adult normal tissues, chronic persistent inflammation, rheumatoid arthritis and cancer (Review). Int J Mol Med. 2007;19(2):273–8.

    CAS  PubMed  Google Scholar 

  51. Iozzo RV, Eichstetter I, Danielson KG. Aberrant expression of the growth factor Wnt-5A in human malignancy. Cancer Res. 1995;55(16):3495–9.

    CAS  PubMed  Google Scholar 

  52. Firestein GS. Invasive fibroblast-like synoviocytes in rheumatoid arthritis. Passive responders or transformed aggressors? Arthritis Rheum. 1996;39(11):1781–90. https://doi.org/10.1002/art.1780391103.

    Article  CAS  PubMed  Google Scholar 

  53. VanderWeele TJ, Tchetgen Tchetgen EJ, Cornelis M, Kraft P. Methodological challenges in mendelian randomization. Epidemiology. 2014;25(3):427–35. https://doi.org/10.1097/EDE.0000000000000081.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Rees JMB, Wood AM, Burgess S. Extending the MR-Egger method for multivariable Mendelian randomization to correct for both measured and unmeasured pleiotropy. Stat Med. 2017;36(29):4705–18. https://doi.org/10.1002/sim.7492.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Burgess S, Davies NM, Thompson SG. Bias due to participant overlap in two-sample Mendelian randomization. Genet Epidemiol. 2016;40(7):597–608. https://doi.org/10.1002/gepi.21998.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Freeman G, Cowling BJ, Schooling CM. Power and sample size calculations for Mendelian randomization studies using one genetic instrument. Int J Epidemiol. 2013;42(4):1157–63. https://doi.org/10.1093/ije/dyt110.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to express our sincere gratitude to the National Natural Science Foundation of China for providing financial support for this study [Grant Numbers 82070778, 82272876, 82102975]. The authors thank for Editage (www.editage.cn) helping with the editing of the manuscript. The authors acknowledge the efforts of the genome-wide association study consortia (GWAS) for providing high-quality resources for researchers.

Funding

This work was supported by the National Natural Science Foundation of China [Grant Numbers: 82070778, 82272876, 81972381, 82102975].

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: JYO, CL, LZ. Search and evaluation: JYO, LZ. Data Analysis: JYO, YQW, YYF, QMZ, LZ. Writing—original draft and Visualization: JYO, LZ,HB. Writing—Review and Revision: CL, JYO, YQW, YYF, QMZ, MQ, HB. Supervision and Project Management: CL, LLM, HB, XJT, MQ, LZ, HB. Resources: CL, LLM, HB, XJT, MQ.

Corresponding authors

Correspondence to Hai Bi or Cheng Liu.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted without any commercial or financial relationships construed as a potential conflict of interest.

Ethical Approval

The ethical review board supported the research of all consortia, and Informed consent was waived as this was a meta-analysis of previous studies.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 10739 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ou, J., Zou, L., Wu, Y. et al. Causal inference between rheumatoid arthritis and prostate cancer. Clin Exp Med 23, 4681–4694 (2023). https://doi.org/10.1007/s10238-023-01151-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-023-01151-9

Keywords

Navigation