Skip to main content

Advertisement

Log in

Somatic ARAF mutations in pediatric Langerhans cell histiocytosis: clinicopathologic, genetic and functional profiling

  • Research
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

ARAF mutations have been identified in a limited subset of patients with Langerhans cell histiocytosis (LCH), a rare disorder characterized by abnormal proliferation of Langerhans cells. LCH is primarily instigated by mutations in the mitogen-activated protein kinase (MAPK) signaling pathway, with BRAFV600E and MAP2K1 mutations constituting most cases. ARAF mutations in LCH highlight the heterogeneity of the disease and provide insights into its underlying molecular mechanisms. However, the occurrence of ARAF-positive LCH cases is extremely rare, with only two reported globally. Although they may be linked to a more aggressive form of LCH and a more severe clinical progression, the clinical significance and functional consequences of these mutations remain uncertain. We performed next-generation sequencing (NGS) to explore driver mutations in 148 pediatric LCH patients and recognized a series of mutations, including an identical novel somatic ARAF mutation, c.1046_1051delAGGCTT (p.Q349_F351delinsL), in four pediatric LCH patients. It was considered an ARAF hotspot mutation. All reported ARAF-positive patients worldwide exhibited characteristic pathological features of LCH, albeit with involvement across multiple systems. In vitro functional studies showed that this mutation could trigger the MAPKinase pathway and phosphorylate its downstream effectors MEK1/2 and ERK1/2 (relatively weaker than BRAFV600E). Over-activation of mutant A-Raf kinase could be inhibited by the BRAF inhibitor vemurafenib. LCH is uncommon, and ARAF mutation is even rarer. In our study, we have identified a novel hotspot somatic ARAF mutation, which has been verified through functional analysis to be an activating mutation. LCH patients with ARAF mutation typically have an unfavorable prognosis due to limited treatment experiences, although they do not exhibit a high relapse rate. To aid in the development of personalized treatment approaches and prognostic markers for LCH patients, it is recommended to conduct typical pathological and immunohistochemical examinations, as well as genetic tests utilizing a targeted gene panel or whole exome sequencing (WES), for LCH diagnosis, thereby promoting the use of inhibitor treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability statement

The datasets used to support this paper's results are available in the article and more data will be available upon request. Additional sequencing data files have been deposited in NCBI GenBank under accession number PRJNA875244.

Abbreviations

DCs:

Dendritic cells

ECD:

Erdheim–Chester disease

ERK:

Extracellular signal-regulated kinase

FFPE:

Formalin-fixed paraffin-embedded

IHC:

Histopathology and immunohistochemistry

LCH:

Langerhans cell histiocytosis

MAPKinase:

Mitogen-activated protein kinase

MEK:

Mitogen-activated protein kinase kinase

MS:

Multiple-system involvement

MS-OR :

Multiple-system without risk-organ involvement

MS-OR+ :

Multiple-system with risk-organ involvement

NGS:

Next-generation sequencing

SS:

Single system involvement

WES:

Whole exome sequencing

References

  1. Allen CE, Merad M, McClain KL. Langerhans-Cell Histiocytosis. N Engl J Med. 2018;379(9):856–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Rodriguez-Galindo C, Allen CE. Langerhans cell histiocytosis. Blood. 2020;135(16):1319–31.

    PubMed  Google Scholar 

  3. Degar BA, Rollins BJ. Langerhans cell histiocytosis: malignancy or inflammatory disorder doing a great job of imitating one? Dis Model Mech. 2009;2(9–10):436–9.

    PubMed  PubMed Central  Google Scholar 

  4. Li Z, Yanqiu L, Yan W, et al. Two case report studies of Langerhans cell histiocytosis with an analysis of 918 patients of Langerhans cell histiocytosis in literatures published in China. Int J Dermatol. 2010;49(10):1169–74.

    PubMed  Google Scholar 

  5. Harmon CM, Brown N. Langerhans cell histiocytosis: a clinicopathologic review and molecular pathogenetic update. Arch Pathol Lab Med. 2015;139(10):1211–4.

    PubMed  Google Scholar 

  6. Gulati N, Allen CE. Langerhans cell histiocytosis: Version 2021. Hematol Oncol. 2021;39(Suppl 1):15–23.

  7. Berres ML, Merad M, Allen CE. Progress in understanding the pathogenesis of Langerhans cell histiocytosis: back to Histiocytosis X? Br J Haematol. 2015;169(1):3–13.

    PubMed  Google Scholar 

  8. Ballester LY, Cantu MD, Lim KPH, et al. The use of BRAF V600E mutation-specific immunohistochemistry in pediatric Langerhans cell histiocytosis. Hematol Oncol. 2018;36(1):307–15.

    CAS  PubMed  Google Scholar 

  9. Heritier S, Emile JF, Barkaoui MA, et al. BRAF mutation correlates with high-risk langerhans cell histiocytosis and increased resistance to first-line therapy. J Clin Oncol. 2016;34(25):3023–30.

    PubMed  PubMed Central  Google Scholar 

  10. Kobayashi M, Ando S, Kawamata T, et al. Clinical features and outcomes of adult Langerhans cell histiocytosis: a single-center experience. Int J Hematol. 2020;112(2):185–92.

    CAS  PubMed  Google Scholar 

  11. Liu X, Zhang Y, Zhou CX. High prevalence of BRAF V600E mutations in langerhans cell histiocytosis of head and neck in chinese patients. Int J Surg Pathol. 2019;27(8):836–43.

    CAS  PubMed  Google Scholar 

  12. Sasaki Y, Guo Y, Arakawa F, et al. Analysis of the BRAFV600E mutation in 19 cases of Langerhans cell histiocytosis in Japan. Hematol Oncol. 2017;35(3):329–34.

    CAS  PubMed  Google Scholar 

  13. Feng S, Han L, Yue M, et al. Frequency detection of BRAF V600E mutation in a cohort of pediatric langerhans cell histiocytosis patients by next-generation sequencing. Orphanet J Rare Dis. 2021;16(1):272.

    PubMed  PubMed Central  Google Scholar 

  14. Krooks J, Minkov M, Weatherall AG. Langerhans cell histiocytosis in children: History, classification, pathobiology, clinical manifestations, and prognosis. J Am Acad Dermatol. 2018;78(6):1035–44.

    PubMed  Google Scholar 

  15. Haupt R, Minkov M, Astigarraga I, et al. Langerhans cell histiocytosis (LCH): guidelines for diagnosis, clinical work-up, and treatment for patients till the age of 18 years. Pediatr Blood Cancer. 2013;60(2):175–84.

    PubMed  Google Scholar 

  16. Minkov M, Grois N, Heitger A, et al. Treatment of multisystem Langerhans cell histiocytosis. Results of the DAL-HX 83 and DAL-HX 90 studies. DAL-HX Study Group. Klin Padiatr. 2000;212(4):139–44.

  17. Morimoto A, Ikushima S, Kinugawa N, et al. Improved outcome in the treatment of pediatric multifocal Langerhans cell histiocytosis: Results from the Japan Langerhans Cell Histiocytosis Study Group-96 protocol study. Cancer. 2006;107(3):613–9.

    PubMed  Google Scholar 

  18. Gadner H, Minkov M, Grois N, et al. Therapy prolongation improves outcome in multisystem Langerhans cell histiocytosis. Blood. 2013;121(25):5006–14.

    CAS  PubMed  Google Scholar 

  19. Sakamoto K, Morimoto A, Shioda Y, et al. Long-term complications in uniformly treated paediatric Langerhans histiocytosis patients disclosed by 12 years of follow-up of the JLSG-96/02 studies. Br J Haematol. 2021;192(3):615–20.

    CAS  PubMed  Google Scholar 

  20. Morimoto A, Shioda Y, Imamura T, et al. Intensification of induction therapy and prolongation of maintenance therapy did not improve the outcome of pediatric Langerhans cell histiocytosis with single-system multifocal bone lesions: results of the Japan Langerhans Cell Histiocytosis Study Group-02 Protocol Study. Int J Hematol. 2018;108(2):192–8.

    PubMed  Google Scholar 

  21. Sondka Z, Bamford S, Cole CG, et al. The COSMIC Cancer Gene Census: describing genetic dysfunction across all human cancers. Nat Rev Cancer. 2018;18(11):696–705.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Steinhaus R, Proft S, Schuelke M, et al. MutationTaster2021. Nucleic Acids Res. 2021;49(W1):W446–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009;4(7):1073–81.

    CAS  PubMed  Google Scholar 

  24. Choi Y, Chan AP. PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics. 2015;31(16):2745–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ferlaino M, Rogers MF, Shihab HA, et al. An integrative approach to predicting the functional effects of small indels in non-coding regions of the human genome. BMC Bioinformatics. 2017;18(1):442.

    PubMed  PubMed Central  Google Scholar 

  26. Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 2019;47(D1):D886–94.

    CAS  PubMed  Google Scholar 

  27. Li S, van der Velde KJ, de Ridder D, et al. CAPICE: a computational method for Consequence-Agnostic Pathogenicity Interpretation of Clinical Exome variations. Genome Med. 2020;12(1):75.

    PubMed  PubMed Central  Google Scholar 

  28. Siepel A, Bejerano G, Pedersen JS, et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 2005;15(8):1034–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A. Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res. 2010;20(1):110–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Li MM, Datto M, Duncavage EJ, et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017;19(1):4–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Berres ML, Lim KP, Peters T, et al. BRAF-V600E expression in precursor versus differentiated dendritic cells defines clinically distinct LCH risk groups. J Exp Med. 2014;211(4):669–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Satoh T, Smith A, Sarde A, et al. B-RAF mutant alleles associated with Langerhans cell histiocytosis, a granulomatous pediatric disease. PLoS ONE. 2012;7(4): e33891.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Badalian-Very G, Vergilio JA, Degar BA, Rodriguez-Galindo C, Rollins BJ. Recent advances in the understanding of Langerhans cell histiocytosis. Br J Haematol. 2012;156(2):163–72.

    CAS  PubMed  Google Scholar 

  34. DiCaprio MR, Roberts TT. Diagnosis and management of Langerhans cell histiocytosis. J Am Acad Orthop Surg. 2014;22(10):643–52.

    PubMed  Google Scholar 

  35. Gan X, Wang J, Wang C, et al. PRR5L degradation promotes mTORC2-mediated PKC-delta phosphorylation and cell migration downstream of Galpha12. Nat Cell Biol. 2012;14(7):686–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Consortium APG. AACR Project GENIE: Powering Precision Medicine through an International Consortium. Cancer Discov. 2017;7(8):818–31.

    Google Scholar 

  37. Nelson DS, Quispel W, Badalian-Very G, et al. Somatic activating ARAF mutations in Langerhans cell histiocytosis. Blood. 2014;123(20):3152–5.

    CAS  PubMed  Google Scholar 

  38. Chakraborty R, Hampton OA, Shen X, et al. Mutually exclusive recurrent somatic mutations in MAP2K1 and BRAF support a central role for ERK activation in LCH pathogenesis. Blood. 2014;124(19):3007–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. McGinnis LM, Nybakken G, Ma L, Arber DA. Frequency of MAP2K1, TP53, and U2AF1 mutations in BRAF-mutated Langerhans Cell histiocytosis: further characterizing the genomic landscape of LCH. Am J Surg Pathol. 2018;42(7):885–90.

    PubMed  Google Scholar 

  40. Diamond EL, Durham BH, Haroche J, et al. Diverse and targetable kinase alterations drive histiocytic neoplasms. Cancer Discov. 2016;6(2):154–65.

    CAS  PubMed  Google Scholar 

  41. Rebocho AP, Marais R. ARAF acts as a scaffold to stabilize BRAF:CRAF heterodimers. Oncogene. 2013;32(26):3207–12.

    CAS  PubMed  Google Scholar 

  42. Li D, March ME, Gutierrez-Uzquiza A, et al. ARAF recurrent mutation causes central conducting lymphatic anomaly treatable with a MEK inhibitor. Nat Med. 2019;25(7):1116–22.

    CAS  PubMed  Google Scholar 

  43. Brown NA, Furtado LV, Betz BL, et al. High prevalence of somatic MAP2K1 mutations in BRAF V600E-negative Langerhans cell histiocytosis. Blood. 2014;124(10):1655–8.

    CAS  PubMed  Google Scholar 

  44. Chakraborty R, Burke TM, Hampton OA, et al. Alternative genetic mechanisms of BRAF activation in Langerhans cell histiocytosis. Blood. 2016;128(21):2533–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Heritier S, Helias-Rodzewicz Z, Chakraborty R, et al. New somatic BRAF splicing mutation in Langerhans cell histiocytosis. Mol Cancer. 2017;16(1):115.

    PubMed  PubMed Central  Google Scholar 

  46. Nelson DS, van Halteren A, Quispel WT, et al. MAP2K1 and MAP3K1 mutations in Langerhans cell histiocytosis. Genes Chromosomes Cancer. 2015;54(6):361–8.

    CAS  PubMed  Google Scholar 

  47. Baljuls A, Mueller T, Drexler HC, Hekman M, Rapp UR. Unique N-region determines low basal activity and limited inducibility of A-RAF kinase: the role of N-region in the evolutionary divergence of RAF kinase function in vertebrates. J Biol Chem. 2007;282(36):26575–90.

    CAS  PubMed  Google Scholar 

  48. Hogstad B, Berres ML, Chakraborty R, et al. RAF/MEK/extracellular signal-related kinase pathway suppresses dendritic cell migration and traps dendritic cells in Langerhans cell histiocytosis lesions. J Exp Med. 2018;215(1):319–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Morimoto A, Shioda Y, Imamura T, et al. Intensified and prolonged therapy comprising cytarabine, vincristine and prednisolone improves outcome in patients with multisystem Langerhans cell histiocytosis: results of the Japan Langerhans Cell Histiocytosis Study Group-02 Protocol Study. Int J Hematol. 2016;104(1):99–109.

    CAS  PubMed  Google Scholar 

  50. Diamond EL, Subbiah V, Lockhart AC, et al. Vemurafenib for BRAF V600-Mutant Erdheim-Chester disease and Langerhans cell histiocytosis: analysis of data from the histology-independent, Phase 2. Open-label VE-BASKET Study JAMA Oncol. 2018;4(3):384–8.

    PubMed  Google Scholar 

  51. Diamond EL, Durham BH, Ulaner GA, et al. Efficacy of MEK inhibition in patients with histiocytic neoplasms. Nature. 2019;567(7749):521–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Eckstein OS, Visser J, Rodriguez-Galindo C, Allen CE. Clinical responses and persistent BRAF V600E(+) blood cells in children with LCH treated with MAPK pathway inhibition. Blood. 2019;133(15):1691–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Donadieu J, Larabi IA, Tardieu M, et al. Vemurafenib for refractory multisystem Langerhans cell Histiocytosis in children: an international observational study. J Clin Oncol. 2019;37(31):2857–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Hyman DM, Puzanov I, Subbiah V, et al. Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations. N Engl J Med. 2015;373(8):726–36.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to patients and families for their cooperation.

Funding

The present study was supported by the Project from Wujieping Medical Foundation of China (Grant No. 20.6750.2021-04-37).

Author information

Authors and Affiliations

Author notes

  1. Rong Liu and Yibing Guo are Co-first authors.

    Authors

    Contributions

    RL designed research, collected and analyzed clinical data. YG designed research, analyzed data and wrote the manuscript. LH analyzed data and performed laboratory work. SF and JC contributed to the care and management of patients. SF also collected clinical data. YS is the liaison between patients and researchers. ZC and XC conceived and supervised research. All authors have approved the submitted manuscript.

    Corresponding authors

    Correspondence to Zhenhua Cao or Xiaodai Cui.

    Ethics declarations

    Conflict of interest

    The authors Y.G., L.H., Y.S. and Z.C. are employed by GrandOmics (Beijing, China). All authors declared no competing financial interests.

    Ethics approval and consent to participate

    This study was performed according to the Declaration of Helsinki, and the collection of tissues or blood samples from patients was obtained with patient-informed consent (from their guardians) under approval by the research ethics committee of the Children’s Hospital of Capital Institute of Pediatrics (Identifier: SHERLLM2020005). All patients provided written informed consent for publication of their cases.

    Additional information

    Publisher's Note

    Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

    Supplementary Information

    Below is the link to the electronic supplementary material.

    Supplementary file1 (DOCX 21 KB)

    Rights and permissions

    Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

    Reprints and permissions

    About this article

    Check for updates. Verify currency and authenticity via CrossMark

    Cite this article

    Liu, R., Guo, Y., Han, L. et al. Somatic ARAF mutations in pediatric Langerhans cell histiocytosis: clinicopathologic, genetic and functional profiling. Clin Exp Med 23, 5269–5279 (2023). https://doi.org/10.1007/s10238-023-01134-w

    Download citation

    • Received:

    • Accepted:

    • Published:

    • Issue Date:

    • DOI: https://doi.org/10.1007/s10238-023-01134-w

    Keywords

    Navigation