Skip to main content

Advertisement

Log in

Pattern and clinical correlates of renal iron deposition in adult beta-thalassemia major patients

  • Research
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

We evaluated pattern and clinical correlates of renal T2* measurements in adult β-thalassemia major (β-TM) patients. Ninety β-TM patients (48 females, 38.15 ± 7.94 years), consecutively enrolled in the Extension-Myocardial Iron Overload in Thalassemia network, underwent T2* magnetic resonance imaging (MRI) for quantification of iron overload (IO) in kidneys, liver, pancreas, and heart. Ten (11.1%) patients showed renal IO (T2* < 31 ms). Global kidney T2* values did not show a correlation with gender, age, splenectomy, regular transfusions or chelation starting age, pre-transfusion hemoglobin, and serum ferritin levels. Global kidney T2* values showed an inverse correlation with MRI liver iron concentration (LIC) values (R = − 0.349; p = 0.001) and a positive correlation with global pancreas T2* values (R = 0.212; p = 0.045). Frequency of renal IO was significantly higher in patients with cardiac IO than in patients without cardiac IO (50.0% vs. 6.3%; p = 0.001). A significant inverse association was detected between global kidneys T2* values and lactate dehydrogenase (LDH) (R = − 0.529; p < 0.0001). In multivariate regression analysis, MRI LIC and LDH were the strongest predictors of global kidney T2* values. A MRI LIC > 4.83 mg/g dw predicted the presence of renal IO (sensitivity = 90.0%; specificity = 61.2%). Global kidney T2* values were inversely correlated with uric acid (R = − 0.269; p = 0.025). In conclusion, in adult β-TM patients, renal iron deposition is not common and is linked to both hemolysis and total body iron overload.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Cao A, Galanello R. Beta-thalassemia. Genet Med. 2010;12(2):61–76.

    CAS  PubMed  Google Scholar 

  2. Olivieri NF. The beta-thalassemias. N Engl J Med. 1999;341(2):99–109.

    CAS  PubMed  Google Scholar 

  3. Andrews PA. Disorders of iron metabolism. N Engl J Med. 2000;342(17):1293.

    CAS  PubMed  Google Scholar 

  4. Ozment CP, Turi JL. Iron overload following red blood cell transfusion and its impact on disease severity. Biochim Biophys Acta. 2009;1790(7):694–701.

    CAS  PubMed  Google Scholar 

  5. Hentze MW, Muckenthaler MU, Andrews NC. Balancing acts: molecular control of mammalian iron metabolism. Cell. 2004;117(3):285–97.

    CAS  PubMed  Google Scholar 

  6. Borgna-Pignatti C, Rugolotto S, De Stefano P, et al. Survival and complications in patients with thalassemia major treated with transfusion and deferoxamine. Haematologica. 2004;89(10):1187–93.

    PubMed  Google Scholar 

  7. Modell B, Khan M, Darlison M, Westwood MA, Ingram D, Pennell DJ. Improved survival of thalassaemia major in the UK and relation to T2* cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2008;10(1):42.

    PubMed  PubMed Central  Google Scholar 

  8. Pepe A, Pistoia L, Gamberini MR, et al. National networking in rare diseases and reduction of cardiac burden in thalassemia major. Eur Heart J. 2022;43(26):2482–92.

    PubMed  Google Scholar 

  9. Demosthenous C, Vlachaki E, Apostolou C, et al. Beta-thalassemia: renal complications and mechanisms: a narrative review. Hematology. 2019;24(1):426–38.

    CAS  Google Scholar 

  10. Sumboonnanonda A, Malasit P, Tanphaichitr VS, et al. Renal tubular function in beta-thalassemia. Pediatr Nephrol. 1998;12(4):280–3.

    CAS  PubMed  Google Scholar 

  11. Sadeghi-Bojd S, Hashemi M, Karimi M. Renal tubular function in patients with beta-thalassaemia major in Zahedan, southeast Iran. Singapore Med J. 2008;49(5):410–2.

    CAS  PubMed  Google Scholar 

  12. Koliakos G, Papachristou F, Koussi A, et al. Urine biochemical markers of early renal dysfunction are associated with iron overload in beta-thalassaemia. Clin Lab Haematol. 2003;25(2):105–9.

    CAS  PubMed  Google Scholar 

  13. Zhou XJ, Laszik Z, Wang XQ, Silva FG, Vaziri ND. Association of renal injury with increased oxygen free radical activity and altered nitric oxide metabolism in chronic experimental hemosiderosis. Lab Invest. 2000;80(12):1905–14.

    CAS  PubMed  Google Scholar 

  14. Anderson LJ, Holden S, Davis B, et al. Cardiovascular T2-star (T2*) magnetic resonance for the early diagnosis of myocardial iron overload. Eur Heart J. 2001;22(23):2171–9.

    CAS  PubMed  Google Scholar 

  15. Meloni A, Positano V, Pepe A, et al. Preferential patterns of myocardial iron overload by multislice multiecho T*2 CMR in thalassemia major patients. Magn Reson Med. 2010;64(1):211–9.

    PubMed  Google Scholar 

  16. Wood JC. Magnetic resonance imaging measurement of iron overload. Curr Opin Hematol. 2007;14(3):183–90.

    PubMed  PubMed Central  Google Scholar 

  17. Pepe A, Pistoia L, Gamberini MR, et al. The close link of pancreatic iron with glucose metabolism and with cardiac complications in thalassemia major: a large. Multicenter Observat Study Diabetes Care. 2020;43(11):2830–9.

    Google Scholar 

  18. Schein A, Enriquez C, Coates TD, Wood JC. Magnetic resonance detection of kidney iron deposition in sickle cell disease: a marker of chronic hemolysis. J Magn Reson Imaging. 2008;28(3):698–704.

    PubMed  PubMed Central  Google Scholar 

  19. Hashemieh M, Azarkeivan A, Akhlaghpoor S, Shirkavand A, Sheibani K. T2-star (T2*) magnetic resonance imaging for assessment of kidney iron overload in thalassemic patients. Arch Iran Med. 2012;15(2):91–4.

    PubMed  Google Scholar 

  20. ElAlfy MS, Khalil Elsherif NH, Ebeid FSE, et al. Renal iron deposition by magnetic resonance imaging in pediatric beta-thalassemia major patients: relation to renal biomarkers, total body iron and chelation therapy. Eur J Radiol. 2018;103:65–70.

    PubMed  Google Scholar 

  21. Pepe A, Positano V, Santarelli F, et al. Multislice multiecho T2* cardiovascular magnetic resonance for detection of the heterogeneous distribution of myocardial iron overload. J Magn Reson Imaging. 2006;23(5):662–8.

    PubMed  Google Scholar 

  22. Ramazzotti A, Pepe A, Positano V, et al. Multicenter validation of the magnetic resonance t2* technique for segmental and global quantification of myocardial iron. J Magn Reson Imaging. 2009;30(1):62–8.

    PubMed  Google Scholar 

  23. Meloni A, De Marchi D, Pistoia L, et al. Multicenter validation of the magnetic resonance T2* technique for quantification of pancreatic iron. Eur Radiol. 2019;29(5):2246–52.

    PubMed  Google Scholar 

  24. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of diet in renal disease study group. Ann Intern Med. 1999;130(6):461–70.

    CAS  PubMed  Google Scholar 

  25. Grassedonio E, Meloni A, Positano V, et al. Quantitative T2* magnetic resonance imaging for renal iron overload assessment: normal values by age and sex. Abdom Imaging. 2015;40:1700–4.

    PubMed  Google Scholar 

  26. Restaino G, Meloni A, Positano V, et al. Regional and global pancreatic T*(2) MRI for iron overload assessment in a large cohort of healthy subjects: normal values and correlation with age and gender. Magn Reson Med. 2011;65(3):764–9.

    PubMed  Google Scholar 

  27. Positano V, Salani B, Pepe A, et al. Improved T2* assessment in liver iron overload by magnetic resonance imaging. Magn Reson Imaging. 2009;27(2):188–97.

    PubMed  Google Scholar 

  28. Positano V, Pepe A, Santarelli MF, et al. Standardized T2* map of normal human heart in vivo to correct T2* segmental artefacts. NMR Biomed. 2007;20(6):578–90.

    PubMed  Google Scholar 

  29. Meloni A, Barbuto L, Pistoia L, et al. Frequency, pattern, and associations of renal iron accumulation in sickle/beta-thalassemia patients. Ann Hematol. 2022;101(9):1941–50.

    CAS  PubMed  Google Scholar 

  30. Meloni A, Luciani A, Positano V, et al. Single region of interest versus multislice T2* MRI approach for the quantification of hepatic iron overload. J Magn Reson Imaging. 2011;33(2):348–55.

    PubMed  Google Scholar 

  31. Wood JC, Enriquez C, Ghugre N, et al. MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell disease patients. Blood. 2005;106(4):1460–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Meloni A, Rienhoff HY Jr, Jones A, Pepe A, Lombardi M, Wood JC. The use of appropriate calibration curves corrects for systematic differences in liver R2* values measured using different software packages. Br J Haematol. 2013;161(6):888–91.

    PubMed  PubMed Central  Google Scholar 

  33. Angelucci E, Brittenham GM, McLaren CE, et al. Hepatic iron concentration and total body iron stores in thalassemia major. N Engl J Med. 2000;343(5):327–31.

    CAS  PubMed  Google Scholar 

  34. Meloni A, De Marchi D, Positano V, et al. Accurate estimate of pancreatic T2* values: how to deal with fat infiltration. Abdom Imaging. 2015;40(8):3129–36.

    PubMed  Google Scholar 

  35. Cerqueira MD, Weissman NJ, Dilsizian V, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002;105(4):539–42.

    PubMed  Google Scholar 

  36. Meloni A, Maggio A, Positano V, et al. CMR for myocardial iron overload quantification: calibration curve from the MIOT network. Eur Radiol. 2020;29(5):2246–52.

    Google Scholar 

  37. Taher A, Elalfy MS, Al Zir K, et al. Importance of optimal dosing >/= 30 mg/kg/d during deferasirox treatment: 2.7-yr follow-up from the ESCALATOR study in patients with beta-thalassaemia. Eur J Haematol. 2011;87(4):355–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Casale M, Marsella M, Ammirabile M, et al. Predicting factors for liver iron overload at the first magnetic resonance in children with thalassaemia major. Blood Transfus. 2018;2018:1–6.

    Google Scholar 

  39. Noetzli LJ, Papudesi J, Coates TD, Wood JC. Pancreatic iron loading predicts cardiac iron loading in thalassemia major. Blood. 2009;114(19):4021–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Gladwin MT, Kanias T, Kim-Shapiro DB. Hemolysis and cell-free hemoglobin drive an intrinsic mechanism for human disease. J Clin Investig. 2012;122(4):1205–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kristiansen M, Graversen JH, Jacobsen C, et al. Identification of the haemoglobin scavenger receptor. Nature. 2001;409(6817):198–201.

    CAS  PubMed  Google Scholar 

  42. Gburek J, Verroust PJ, Willnow TE, et al. Megalin and cubilin are endocytic receptors involved in renal clearance of hemoglobin. J Am Soc Nephrol. 2002;13(2):423–30.

    CAS  PubMed  Google Scholar 

  43. Kovtunovych G, Eckhaus MA, Ghosh MC, Ollivierre-Wilson H, Rouault TA. Dysfunction of the heme recycling system in heme oxygenase 1-deficient mice: effects on macrophage viability and tissue iron distribution. Blood. 2010;116(26):6054–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Waikar SS, Betensky RA, Emerson SC, Bonventre JV. Imperfect gold standards for kidney injury biomarker evaluation. J Am Soc Nephrol. 2012;23(1):13–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Grangé S, Bertrand DM, Guerrot D, Eas F, Godin M. Acute renal failure and Fanconi syndrome due to deferasirox. Nephrol Dial Transpl. 2010;25(7):2376–8.

    Google Scholar 

  46. Behairy OG, Abd Almonaem ER, Abed NT, et al. Role of serum cystatin-C and beta-2 microglobulin as early markers of renal dysfunction in children with beta thalassemia major. Int J Nephrol Renovasc Dis. 2017;10:261–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Giordano C, Karasik O, King-Morris K, Asmar A. Uric acid as a marker of kidney disease: review of the current literature. Dis Markers. 2015;2015: 382918.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank all the colleagues involved in the E-MIOT project (https://emiot.ftgm.it/) and all patients for their cooperation. This work is generated within the European Reference Network on Rare Hematological Diseases (ERN-EuroBloodNet).

Funding

The E-MIOT project received “no-profit support” from industrial sponsorships (Chiesi Farmaceutici S.p.A. and Bayer). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

AM conceived the study, analyzed the data, interpreted the results, and wrote the paper. LB analyzed the renal T2* images. VP developed the software for image analysis. LP was responsible for data collection. AS, TC, FM, CA, PG, and AB collected the data. LR contributed to the interpretation of the results. FC supervised the study. All authors contributed to critical revision of the manuscript and read and approved the final version.

Corresponding author

Correspondence to Filippo Cademartiri.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Institutional Ethics Committee of Area Vasta Nord Ovest (protocol code 56664, date of approval October 8, 2015).

Consent to participate

Informed consent was obtained from all patients included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meloni, A., Barbuto, L., Positano, V. et al. Pattern and clinical correlates of renal iron deposition in adult beta-thalassemia major patients. Clin Exp Med 23, 3573–3579 (2023). https://doi.org/10.1007/s10238-023-01133-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-023-01133-x

Keywords

Navigation