Skip to main content

Advertisement

Log in

RETRACTED ARTICLE: Long non-coding RNA PICSAR serves as a non-invasive biomarker for the diagnosis and prognosis of cutaneous squamous cell carcinoma

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

This article was retracted on 24 October 2023

This article has been updated

Abstract

Cutaneous squamous cell carcinoma (cSCC) is one of the most common malignant tumors in dermatology, and its incidence is increasing year by year. Long non-coding RNAs (lncRNAs) play vital roles in the processes of various malignant tumors. This study aimed to evaluate the expression of long non-coding RNA PICSAR and investigate whether serum PICSAR could serve as a biomarker for the diagnosis and prognosis of cSCC. The expression level of PICSAR was measured using quantitative Real-Time PCR. The diagnostic value of PICSAR was evaluated by receiver operating characteristic (ROC) analysis. Survival curves were established using the Kaplan–Meier method, and the log-rank test was used to compare differences between the two curves. Prognostic value of PICSAR was confirmed by Cox regression analysis. The expression of PICSAR was upregulated in serum of cSCC patients and tumor tissues of patients. Additionally, serum PICSAR expression had relatively high diagnostic accuracy for the screening of cSCC. Moreover, PICSAR expression was correlated with tumor size, grade of differentiation and TNM stages, and significantly increased in cSCC patients with poor tumor differentiation and cSCC patients with III–IV TNM stage. Furthermore, patients with high PICSAR expression had lower overall survival than the patients with low PICSAR expression, and PICSAR expression was an independent prognostic factors for cSCC patients. The results of this study indicated that PICSAR was upregulated in cSCC patients and tumor tissues and might serve as a non-invasive biomarker for the diagnosis and prognosis of cSCC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

The data used to support the findings of this study are available from the corresponding author upon reasonable request.

Change history

References

  1. Motaparthi K, Kapil JP, Velazquez EF. Cutaneous squamous cell carcinoma: review of the eighth edition of the American Joint Committee on cancer staging guidelines, prognostic factors, and histopathologic variants. Adv Anat Pathol. 2017;24(4):171–94.

    Article  PubMed  Google Scholar 

  2. Parekh V, Seykora JT. Cutaneous squamous cell carcinoma. Clin Lab Med. 2017;37(3):503–25. https://doi.org/10.1016/j.cll.2017.06.003.

    Article  PubMed  Google Scholar 

  3. Garcia-Sancha N, Corchado-Cobos R, Perez-Losada J, Canueto J. MicroRNA dysregulation in cutaneous squamous cell carcinoma. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20092181.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Brantsch KD, Meisner C, Schonfisch B, et al. Analysis of risk factors determining prognosis of cutaneous squamous-cell carcinoma: a prospective study. Lancet Oncol. 2008;9(8):713–20. https://doi.org/10.1016/S1470-2045(08)70178-5.

    Article  PubMed  Google Scholar 

  5. Breuninger H, Schaumburg-Lever G, Holzschuh J, Horny HP. Desmoplastic squamous cell carcinoma of skin and vermilion surface: a highly malignant subtype of skin cancer. Cancer. 1997;79(5):915–9. https://doi.org/10.1002/(sici)1097-0142(19970301)79:5%3c915::aid-cncr7%3e3.0.co;2-a.

    Article  CAS  PubMed  Google Scholar 

  6. Perez Garcia MP, Mateu Puchades A, Sanmartin JO. Perineural invasion in cutaneous squamous cell carcinoma. Actas dermo-sifiliograficas. 2019;110(6):426–33. https://doi.org/10.1016/j.ad.2018.10.006.

    Article  CAS  PubMed  Google Scholar 

  7. Que SKT, Zwald FO, Schmults CD. Cutaneous squamous cell carcinoma: incidence, risk factors, diagnosis, and staging. J Am Acad Dermatol. 2018;78(2):237–47. https://doi.org/10.1016/j.jaad.2017.08.059.

    Article  PubMed  Google Scholar 

  8. Tang L, Liang Y, Xie H, Yang X, Zheng G. Long non-coding RNAs in cutaneous biology and proliferative skin diseases: Advances and perspectives. Cell Prolif. 2020. https://doi.org/10.1111/cpr.12698.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chi Y, Wang D, Wang J, Yu W, Yang J. Long non-coding RNA in the pathogenesis of cancers. Cells. 2019. https://doi.org/10.3390/cells8091015.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sanchez Calle A, Kawamura Y, Yamamoto Y, Takeshita F, Ochiya T. Emerging roles of long non-coding RNA in cancer. Cancer Sci. 2018;109(7):2093–100. https://doi.org/10.1111/cas.13642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Das Mahapatra K, Pasquali L, Sondergaard JN, et al. A comprehensive analysis of coding and non-coding transcriptomic changes in cutaneous squamous cell carcinoma. Sci Rep. 2020;10(1):3637. https://doi.org/10.1038/s41598-020-59660-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yu GJ, Sun Y, Zhang DW, Zhang P. Long non-coding RNA HOTAIR functions as a competitive endogenous RNA to regulate PRAF2 expression by sponging miR-326 in cutaneous squamous cell carcinoma. Cancer Cell Int. 2019;19:270. https://doi.org/10.1186/s12935-019-0992-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Piipponen M, Nissinen L, Farshchian M, et al. Long Noncoding RNA PICSAR promotes growth of cutaneous squamous cell carcinoma by regulating ERK1/2 activity. J Invest Dermatol. 2016;136(8):1701–10. https://doi.org/10.1016/j.jid.2016.03.028.

    Article  CAS  PubMed  Google Scholar 

  14. Luo Y, Morgan SL, Wang KC. PICSAR: long noncoding RNA in cutaneous squamous cell carcinoma. J Invest Dermatol. 2016;136(8):1541–2. https://doi.org/10.1016/j.jid.2016.04.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–8. https://doi.org/10.1006/meth.2001.1262.

    Article  CAS  PubMed  Google Scholar 

  16. Ma Y, Zhang J, Wen L, Lin A. Membrane-lipid associated lncRNA: a new regulator in cancer signaling. Cancer Lett. 2018;419:27–9. https://doi.org/10.1016/j.canlet.2018.01.008.

    Article  CAS  PubMed  Google Scholar 

  17. Wang J, Su Z, Lu S, et al. LncRNA HOXA-AS2 and its molecular mechanisms in human cancer. Clin Chim Acta Int J Clin Chem. 2018;485:229–33.

    Article  CAS  Google Scholar 

  18. Zhen Q, Gao LN, Wang RF, et al. LncRNA DANCR promotes lung cancer by sequestering miR-216a. Cancer Control J Moffitt Cancer Center. 2018;25(1):1073274818769849. https://doi.org/10.1177/1073274818769849.

    Article  Google Scholar 

  19. Ma TT, Zhou LQ, Xia JH, et al. LncRNA PCAT-1 regulates the proliferation, metastasis and invasion of cervical cancer cells. Eur Rev Med Pharmacol Sci. 2018;22(7):1907–13. https://doi.org/10.26355/eurrev_201804_14713.

    Article  PubMed  Google Scholar 

  20. Wang Y, Sun B, Wen X, et al. The roles of lncRNA in cutaneous squamous cell carcinoma. Front Oncol. 2020;10:158. https://doi.org/10.3389/fonc.2020.00158.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Li F, Liao J, Duan X, He Y, Liao Y. Upregulation of LINC00319 indicates a poor prognosis and promotes cell proliferation and invasion in cutaneous squamous cell carcinoma. J Cell Biochem. 2018;119(12):10393–405. https://doi.org/10.1002/jcb.27388.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang Y, Gao L, Ma S, et al. MALAT1-KTN1-EGFR regulatory axis promotes the development of cutaneous squamous cell carcinoma. Cell Death Differ. 2019;26(10):2061–73. https://doi.org/10.1038/s41418-019-0288-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mei XL, Zhong S. Long noncoding RNA LINC00520 prevents the progression of cutaneous squamous cell carcinoma through the inactivation of the PI3K/Akt signaling pathway by downregulating EGFR. Chin Med J. 2019;132(4):454–65. https://doi.org/10.1097/CM9.0000000000000070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lu X, Gan Q, Gan C, et al. Long non-coding RNA PICSAR knockdown inhibits the progression of cutaneous squamous cell carcinoma by regulating miR-125b/YAP1 axis. Life Sci. 2020. https://doi.org/10.1016/j.lfs.2020.118303.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bi X, Guo XH, Mo BY, et al. LncRNA PICSAR promotes cell proliferation, migration and invasion of fibroblast-like synoviocytes by sponging miRNA-4701-5p in rheumatoid arthritis. EBioMedicine. 2019;50:408–20. https://doi.org/10.1016/j.ebiom.2019.11.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu Z, Mo H, Sun L, et al. Long noncoding RNA PICSAR/miR-588/EIF6 axis regulates tumorigenesis of hepatocellular carcinoma by activating PI3K/AKT/mTOR signaling pathway. Cancer Sci. 2020;111(11):4118–28. https://doi.org/10.1111/cas.14631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu W, Zhou G, Wang H, et al. Circulating lncRNA SNHG11 as a novel biomarker for early diagnosis and prognosis of colorectal cancer. Int J Cancer. 2020;146(10):2901–12. https://doi.org/10.1002/ijc.32747.

    Article  CAS  PubMed  Google Scholar 

  28. Chao Y, Zhou D. lncRNA-D16366 is a potential biomarker for diagnosis and prognosis of hepatocellular carcinoma. Med Sci Monit Intl Med J Exp Clin Res. 2019;25:6581–6. https://doi.org/10.12659/MSM.915100.

    Article  CAS  Google Scholar 

  29. Zhao R, Zhang Y, Zhang X, et al. Exosomal long noncoding RNA HOTTIP as potential novel diagnostic and prognostic biomarker test for gastric cancer. Mol Cancer. 2018;17(1):68. https://doi.org/10.1186/s12943-018-0817-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kaushik SB, Kaushik N. Non-coding RNAs in skin cancers: an update. Non-codin RNA Res. 2016;1(1):83–6. https://doi.org/10.1016/j.ncrna.2016.11.003.

    Article  Google Scholar 

  31. Antonini D, Mollo MR, Missero C. Research techniques made simple: identification and characterization of long noncoding RNA in dermatological research. J Invest Dermatol. 2017;137(3):e21–6. https://doi.org/10.1016/j.jid.2017.01.006.

    Article  CAS  PubMed  Google Scholar 

  32. Lu D, Sun L, Li Z, Mu Z. lncRNA EZRAS1 knockdown represses proliferation, migration and invasion of cSCC via the PI3K/AKT signaling pathway. Mol Med Rep. 2021. https://doi.org/10.3892/mmr.2020.11714.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Chen L, Chen Q, Kuang S, et al. USF1-induced upregulation of LINC01048 promotes cell proliferation and apoptosis in cutaneous squamous cell carcinoma by binding to TAF15 to transcriptionally activate YAP1. Cell Death Dis. 2019;10(4):296. https://doi.org/10.1038/s41419-019-1516-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kofler L, Kofler K, Schulz C, Breuninger H, Hafner HM. Sentinel lymph node biopsy for high-thickness cutaneous squamous cell carcinoma. Arch Dermatol Res. 2021;313(2):119–26. https://doi.org/10.1007/s00403-020-02082-1.

    Article  PubMed  Google Scholar 

  35. Bordignon P, Bottoni G, Xu X, et al. Dualism of FGF and TGF-beta signaling in heterogeneous cancer-associated fibroblast activation with ETV1 as a critical determinant. Cell Rep. 2019;28(9):2358-72.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liao K, Xu J, Yang W, et al. The research progress of LncRNA involved in the regulation of inflammatory diseases. Mol Immunol. 2018;101:182–8. https://doi.org/10.1016/j.molimm.2018.05.030.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

JL, WZ and YW analyzed and interpreted the data regarding, JL and WZ performed the examination of cell, JL and YW wrote the manuscript, JL, WZ and YW revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yanhua Wang.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Ethical approval

The experimental procedures were all in accordance with the guideline of the Ethics Committee of Weifang People’s Hospital and has been approved by the Ethics Committee of Weifang People's Hospital.

Consent to participate

A signed written informed consent was obtained from each patient.

Consent for publication

Written informed consent for publication was obtained from each participant.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail: https://doi.org/10.1007/s10238-023-01219-6

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, J., Zhang, W. & Wang, Y. RETRACTED ARTICLE: Long non-coding RNA PICSAR serves as a non-invasive biomarker for the diagnosis and prognosis of cutaneous squamous cell carcinoma. Clin Exp Med 21, 579–586 (2021). https://doi.org/10.1007/s10238-021-00721-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-021-00721-z

Keywords

Navigation