Skip to main content

Advertisement

Log in

Hardy–Sobolev–Maz’ya inequalities for polyharmonic operators

  • Published:
Annali di Matematica Pura ed Applicata (1923 -) Aims and scope Submit manuscript

Abstract

Let K be affine, that is, \(K=\{z=(x,y)\in {\mathbb {R}}^{n+m}: y_{1}=\cdots =y_{m}=0\}\). We compute the sharp constant of Hardy inequality related to the distance d(zK) for polyharmonic operator. Moreover, we show that there exists a constant \(C>0\) such that for each \(u\in C^{\infty }_{0}({\mathbb {R}}^{n+m}\setminus K)\), there holds

$$\begin{aligned} \int _{{\mathbb {R}}^{n+m}}|\nabla ^{k} u|^{2}\mathrm{d}x\mathrm{d}y-c_{m,k}\int _{{\mathbb {R}}^{n+m}}\frac{u^{2}}{|y|^{2k}}\mathrm{d}x\mathrm{d}y\ge C\left( \int _{{\mathbb {R}}^{n+m}}|y|^{\gamma }|u|^{p}\mathrm{d}x\mathrm{d}y\right) ^{\frac{n+m-2k}{n+m}}, \end{aligned}$$

where \(2\le k<\frac{m+n}{2}\), \(2<p\le \frac{2(n+m)}{n+m-2k}\), \(\gamma =\frac{(n+m-2k)p}{2}-n-m\) and \(c_{m,k}\) is the sharp Hardy constant. These inequalities generalize the result of Maz’ya (case \(k=1\)) and Lu and the second author (case \(m=1\) for polyharmonic operators). In order to prove the main result, we establish some Poincaré–Sobolev inequalities on hyperbolic space which is of independent interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adimurthi, Filippas, S., Tertikas, A.: On the best constant of Hardy–Sobolev inequalities. Nonlinear Anal. 70, 2826–2833 (2009)

    Article  MathSciNet  Google Scholar 

  2. Ahlfors, L.V.: Möbius Transformations in Several Dimensions, Ordway Professorship Lectures in Mathematics. University of Minnesota, School of Mathematics, Minneapolis, MN (1981)

  3. Anker, J.-P., Ji, L.: Heat kernel and Green function estimates on noncompact symmetric spaces. Geom. Funct. Anal. 9, 1035–1091 (1999)

    Article  MathSciNet  Google Scholar 

  4. Beckner, W.: On the Grushin operator and hyperbolic symmetry. Proc. Am. Math. Soc. 129, 1233–1246 (2001)

    Article  MathSciNet  Google Scholar 

  5. Beckner, W.: On Lie groups and hyperbolic symmetry-from Kunze–Stein phenomena to Riesz potentials. Nonlinear Anal. 126, 394–414 (2015)

    Article  MathSciNet  Google Scholar 

  6. Benguria, R.D., Frank, R.L., Loss, M.: The sharp constant in the Hardy–Sobolev–Maz’ya inequality in the three dimensional upper half space. Math. Res. Lett. 15, 613–622 (2008)

    Article  MathSciNet  Google Scholar 

  7. Berchio, E., Ganguly, D.: Improved higher order Poincaré inequalities on the hyperbolic space via Hardy-type remainder terms. Comm. Pure Appl. Anal. 15(5), 1871–1892 (2015)

    MATH  Google Scholar 

  8. Berchio, E., Ganguly, D., Grillo, G.: Sharp Poincaré–Hardy and Poincaré–Rellich inequalities on the hyperbolic space. J. Func. Anal. 272, 1661–1703 (2017)

    Article  Google Scholar 

  9. Cowling, M., Giulini, S., Meda, S.: \(L^{p}-L^{q}\) estimates for functions of the Laplace–Beltrami operator on noncompact symmetric spaces. I. Duke Math. J. 72, 109–150 (1993)

    Article  MathSciNet  Google Scholar 

  10. Davies, E.B., Hinz, A.M.: Explicit constants for Rellich inequalities in \(L^{p}(\Omega )\). Math. Z. 227, 511–523 (1998)

    Article  MathSciNet  Google Scholar 

  11. Davies, E.B., Mandouvalos, N.: Heat kernel bounds on hyperbolic space and Kleinian groups. Proc. Lond. Math. Soc. 52(3), 182–208 (1988)

    Article  MathSciNet  Google Scholar 

  12. Dyda, B., Frank, R.L.: Fractional Hardy–Sobolev–Maz’ya inequality for domains. Stud. Math. 208, 151–166 (2012)

    Article  MathSciNet  Google Scholar 

  13. Filippas, S., Maz’ya, V.G., Tertikas, A.: Sharp Hardy–Sobolev inequalities, C. R. Acad. Sci. Paris Ser. I 339(7), 483–486 (2004)

    Article  MathSciNet  Google Scholar 

  14. Filippas, S., Maz’ya, V.G., Tertikas, A.: Critical Hardy–Sobolev inequalities. J. Math. Pures Appl. 87(1), 37–56 (2007)

    Article  MathSciNet  Google Scholar 

  15. Filippas, S., Moschini, L., Tertikas, A.: Sharp trace Hardy–Sobolev–Maz’ya inequalities and the fractional Laplacian. Arch. Ration. Mech. Anal. 208, 109–161 (2013)

    Article  MathSciNet  Google Scholar 

  16. Filippas, S., Moschini, L., Tertikas, A.: Trace Hardy–Sobolev–Mazy’a inequalities for the half fractional Laplacian. Comm. Pure Appl. Anal. 14, 373–382 (2014)

    Article  Google Scholar 

  17. Filippas, S., Tertikas, A.: Optimizing improved Hardy inequalities. J. Funct. Anal. 192, 186–233. Corrigendum; J. Funct. Anal. 255(2008), 2095 (2002)

  18. Filippas, S., Tertikas, A., Tidblom, J.: On the structure of Hardy– Sobolev–Maz’ya inequalities. J. Eur. Math. Soc. 11, 1165–1185 (2008)

    MathSciNet  MATH  Google Scholar 

  19. Filippas, S., Tertikas, A., Tidblom, J.: Optimal Hardy–Sobolev–Maz’ya inequalities with multiple interior singularities. In: Laptev, A. (eds.) Around the Research of Vladimir Maz’ya I. International Mathematical Series, vol. 11, pp. 137–160 (2010)

  20. Frank, R.L., Loss, M.: Hardy–Sobolev–Maz’ya inequalities for arbitrary domains. J. Math. Pures Appl. 97, 39–54 (2011)

    Article  MathSciNet  Google Scholar 

  21. Frank, R.L., Seiringer, R.: Sharp fractional Hardy inequalities in half-spaces. In: Laptev, A. (eds.) Around the Research of Vladimir Maz’ya. International Mathematical Series, vol. II, pp. 161–167 (2010)

  22. Graham, C.R., Jenne, R., Mason, L.J., Sparling, G.A.J.: Conformally invariant powers of the Laplacian. I. Existence. J. Lond. Math. Soc. 46(2), 557–565 (1992)

    Article  MathSciNet  Google Scholar 

  23. Grigoryan, A., Noguchi, M.: The heat kernel on hyperbolic space. Bull. Lond. Math. Soc. 30, 643–650 (1998)

    Article  MathSciNet  Google Scholar 

  24. Gover, A.R.: Laplacian operators and Q-curvature on conformally Einstein manifolds. Math. Ann. 336, 311–334 (2006)

    Article  MathSciNet  Google Scholar 

  25. Helgason, S.: Groups and geometric analysis. Integral geometry, invariant differential operators, and spherical functions. Pure and Applied Mathematics. 113 Academic Press (1984)

  26. Helgason, S.: Geometric analysis on symmetric spaces, 2nd edition. Mathematical Surveys and Monographs, 39. American Mathematical Society, Providence, RI (2008)

  27. Juhl, A.: Explicit formulas for GJMS-operators and Q-curvatures. Geom. Funct. Anal. 23, 1278–1370 (2013)

    Article  MathSciNet  Google Scholar 

  28. Li, J., Lu, G., Yang, Q.: Fourier analysis and optimal Hardy–Adams inequalities on hyperbolic spaces of any even dimension. Adv. Math. 333, 350–385 (2018)

    Article  MathSciNet  Google Scholar 

  29. Li, J., Lu, G., Yang, Q.: Sharp Adams and Hardy–Adams inequalities of any fractional order on hyperbolic spaces of all dimensions. Trans. Am. Math. Soc. 373(5), 3483–3513 (2020)

    Article  MathSciNet  Google Scholar 

  30. Liu, C., Peng, L.: Generalized Helgason–Fourier transforms associated to variants of the Laplace-Beltrami operators on the unit ball in \({\mathbb{R}}^{n}\). Indiana Univ. Math. J. 58(3), 1457–1492 (2009)

    Article  MathSciNet  Google Scholar 

  31. Liu, C., Shi, J.: Invariant mean-value property and \({\cal{M}}\)-harmonicity in the unit ball of \({\mathbb{R}}^{n}\). Acta Math. Sin. 19, 187–200 (2003)

    Article  MathSciNet  Google Scholar 

  32. Liu, G.: Sharp higher-order Sobolev inequalities in the hyperbolic space \({\mathbb{H}}^{n}\). Calc. Var. Partial Differ. Equ. 47(3–4), 567–588 (2013)

    Article  Google Scholar 

  33. Lu, G., Yang, Q.: A sharp Trudinger–Moser inequality on any bounded and convex planar domain. Calc. Var. Partial. Differ. Equ. 55(153), 1–16 (2016)

    MathSciNet  MATH  Google Scholar 

  34. Lu, G., Yang, Q.: Sharp Hardy–Adams inequalities for bi-Laplacian on hyperbolic space of dimension four. Adv. Math. 319, 567–598 (2017)

    Article  MathSciNet  Google Scholar 

  35. Lu, G., Yang, Q.: Paneitz operators on hyperbolic spaces and high order Hardy–Sobolev–Maz’ya inequalities on half spaces. Am. J. Math. 141, 1777–1816 (2019)

    Article  MathSciNet  Google Scholar 

  36. Lu, G., Yang, Q.: Green’s functions of Paneitz and GJMS operators on hyperbolic spaces and sharp Hardy–Sobolev–Maz’ya inequalities on half spaces. Preprint https://arxiv.org/abs/1903.10365

  37. Mancini, G., Sandeep, K.: On a semilinear elliptic equation in \({\mathbb{H}}^{n}\) , Ann. Scoula Norm. Sup. Pisa Cl. Sci. (5) Vol VII (2008), 635–671

  38. Mancini, G., Sandeep, K., Tintarev, K.: Trudinger–Moser inequality in the hyperbolic space \({\mathbb{H}}^{N}\). Adv. Nonlinear Anal. 2(3), 309–324 (2013)

    MathSciNet  MATH  Google Scholar 

  39. Maz’ya, V.G.: Sobolev Spaces, 2nd edn. Springer, Berlin, Heidelberg (2011)

    Book  Google Scholar 

  40. Maz’ya, V.G., Shaposhnikova, T.: A collection of sharp dilation invariant integral inequalities for differentiable functions. In: Maz’ya, V. (ed.), Sobolev Spaces in Mathematics I: Sobolev Type Inequalities, Int. Math. Ser., vol. 8, pp. 223–247. Springer (2009)

  41. Nguyen, V.H.: Some trace Hardy type inequalities and trace Hardy–Sobolev–Maz’ya type inequalities. J. Func. Anal. 270, 4117–4151 (2016)

    Article  MathSciNet  Google Scholar 

  42. Pinchover, Y., Tintarev, K.: On the Hardy–Sobolev–Maz’ya inequality and its generalizations. In: Maz’ya, V. (ed.) “Sobolev Spaces in Mathematics I: Sobolev Type Inequalities”, International Mathematical Series 8. Springer, pp. 281–297 (2009)

  43. Secchi, S., Smets, D., Willem, M.: Remarks on a Hardy–Sobolev inequality. C. R. Acad. Sci. Paris, Ser. I 336, 811–815 (2003)

    Article  MathSciNet  Google Scholar 

  44. Sloane, C.A.: A fractional Hardy–Sobolev–Maz’ya inequality on the upper half space. Proc. Am. Math. Soc. 139(11), 4003–4016 (2011)

    Article  MathSciNet  Google Scholar 

  45. Terras, A.: Harmonic Analysis on Symmetric Spaces and Applications. Springer, New York (1985)

    Book  Google Scholar 

  46. Tertikas, A., Tintarev, K.: On existence of minimizers for the Hardy–Sobolev–Maz’ya inequality. Ann. Mat. Pura Appl. 186(4), 645–662 (2007)

    Article  MathSciNet  Google Scholar 

  47. Tertikas, A., Zographopoulos, N.B.: Best constants in the Hardy–Rellich inequalities and related improvements. Adv. Math. 209, 407–459 (2007)

    Article  MathSciNet  Google Scholar 

  48. Wang, G., Ye, D.: A Hardy–Moser–Trudinger inequality. Adv. Math. 230, 294–320 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiaohua Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work was partially supported by the National Natural Science Foundation of China (No. 12071353).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q. Hardy–Sobolev–Maz’ya inequalities for polyharmonic operators. Annali di Matematica 200, 2561–2587 (2021). https://doi.org/10.1007/s10231-021-01091-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10231-021-01091-9

Keywords

Mathematics Subject Classification

Navigation