Skip to main content

Advertisement

Log in

Current Advances in Adeno-Associated Virus-Mediated Gene Therapy to Prevent Acquired Hearing Loss

  • Review
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

Adeno-associated viruses (AAVs) are viral vectors that offer an excellent platform for gene therapy due to their safety profile, persistent gene expression in non-dividing cells, target cell specificity, lack of pathogenicity, and low immunogenicity. Recently, gene therapy for genetic hearing loss with AAV transduction has shown promise in animal models. However, AAV transduction for gene silencing or expression to prevent or manage acquired hearing loss is limited. This review provides an overview of AAV as a leading gene delivery vector for treating genetic hearing loss in animal models. We highlight the advantages and shortcomings of AAV for investigating the mechanisms and preventing acquired hearing loss. We predict that AAV-mediated gene manipulation will be able to prevent acquired hearing loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Wang J, Puel JL (2018) Toward cochlear therapies. Physiol Rev 98:2477–2522

    Article  CAS  PubMed  Google Scholar 

  2. Kros CJ, Steyger PS (2019) Aminoglycoside- and cisplatin-induced ototoxicity: mechanisms and otoprotective strategies. Cold Spring Harb Perspect Med 9

  3. Sha SH, Schacht J (2017) Emerging therapeutic interventions against noise-induced hearing loss. Expert Opin Investig Drugs 26:85–96

    Article  CAS  PubMed  Google Scholar 

  4. Wu PZ, Liberman LD, Bennett K, de Gruttola V, O’Malley JT, Liberman MC (2019) Primary neural degeneration in the human cochlea: evidence for hidden hearing loss in the aging ear. Neuroscience 407:8–20

    Article  CAS  PubMed  Google Scholar 

  5. Brown CS, Emmett SD, Robler SK, Tucci DL (2018) Global hearing loss prevention. Otolaryngol Clin North Am 51:575–592

    Article  PubMed  Google Scholar 

  6. Guo J, Chai R, Li H, Sun S (2019) Protection of hair cells from ototoxic drug-induced hearing loss. Adv Exp Med Biol 1130:17–36

    Article  PubMed  Google Scholar 

  7. Nyberg S, Abbott NJ, Shi X, Steyger PS, Dabdoub A (2019) Delivery of therapeutics to the inner ear: the challenge of the blood-labyrinth barrier. Sci Transl Med 11

  8. Akil O, Dyka F, Calvet C, Emptoz A et al (2019) Dual AAV-mediated gene therapy restores hearing in a DFNB9 mouse model. Proc Natl Acad Sci U S A 116:4496–4501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gyorgy B, Nist-Lund C, Pan B et al (2019) Allele-specific gene editing prevents deafness in a model of dominant progressive hearing loss. Nat Med 25:1123–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wu J, Solanes P, Nist-Lund C, Spataro S, Shubina-Oleinik O, Marcovich I, Goldberg H, Schneider BL, Holt JR (2021) Single and dual vector gene therapy with AAV9-PHP.B rescues hearing in Tmc1 mutant mice. Mol Ther 29:973–988

    Article  CAS  PubMed  Google Scholar 

  11. Xue Y, Hu X, Wang D et al (2022) Gene editing in a Myo6 semi-dominant mouse model rescues auditory function. Mol Ther 30:105–118

    Article  CAS  PubMed  Google Scholar 

  12. Hastie E, Samulski RJ (2015) Adeno-associated virus at 50: a golden anniversary of discovery, research, and gene therapy success—a personal perspective. Hum Gene Ther 26:257–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Naso MF, Tomkowicz B, Perry WL 3rd, Strohl WR (2017) Adeno-associated virus (AAV) as a vector for gene therapy. BioDrugs 31:317–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Askew C, Chien WW (2020) Adeno-associated virus gene replacement for recessive inner ear dysfunction: progress and challenges. Hear Res 394:107947

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bankoti K, Generotti C, Hwa T, Wang L, O’Malley BW Jr, Li D (2021) Advances and challenges in adeno-associated viral inner-ear gene therapy for sensorineural hearing loss. Mol Ther Methods Clin Dev 21:209–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Crane R, Conley SM, Al-Ubaidi MR, Naash MI (2021) Gene therapy to the retina and the cochlea. Front Neurosci 15:652215

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hill K, Yuan H, Wang X, Sha SH (2016) Noise-induced loss of hair cells and cochlear synaptopathy are mediated by the activation of AMPK. J Neurosci 36:7497–7510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Maeda Y, Sheffield AM, Smith RJH (2009) Therapeutic regulation of gene expression in the inner ear using RNA interference. Adv Otorhinolaryngol 66:13–36

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Mukherjea D, Jajoo S, Kaur T, Sheehan KE, Ramkumar V, Rybak LP (2010) Transtympanic administration of short interfering (si)RNA for the NOX3 isoform of NADPH oxidase protects against cisplatin-induced hearing loss in the rat. Antioxid Redox Signal 13:589–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Oishi N, Chen FQ, Zheng HW, Sha SH (2013) Intra-tympanic delivery of short interfering RNA into the adult mouse cochlea. Hear Res 296:36–41

    Article  CAS  PubMed  Google Scholar 

  21. Tanaka M, Asaoka M, Yanagawa Y, Hirashima N (2011) Long-term gene-silencing effects of siRNA introduced by single-cell electroporation into postmitotic CNS neurons. Neurochem Res 36:1482–1489

    Article  CAS  PubMed  Google Scholar 

  22. Atchison RW, Casto BC, Hammon WM (1965) Adenovirus-associated defective virus particles. Science 149:754–756

    Article  CAS  PubMed  Google Scholar 

  23. Hoggan MD, Blacklow NR, Rowe WP (1966) Studies of small DNA viruses found in various adenovirus preparations: physical, biological, and immunological characteristics. Proc Natl Acad Sci U S A 55:1467–1474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Samulski RJ, Muzyczka N (2014) AAV-mediated gene therapy for research and therapeutic purposes. Annu Rev Virol 1:427–451

    Article  PubMed  Google Scholar 

  25. Xie Q, Bu W, Bhatia S, Hare J, Somasundaram T, Azzi A, Chapman MS (2002) The atomic structure of adeno-associated virus (AAV-2), a vector for human gene therapy. Proc Natl Acad Sci U S A 99:10405–10410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sonntag F, Köther K, Schmidt K et al (2011) The assembly-activating protein promotes capsid assembly of different adeno-associated virus serotypes. J Virol 85:12686–12697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Earley LF, Powers JM, Adachi K, Baumgart JT, Meyer NL, Xie Q, Chapman MS, Nakai H (2017) Adeno-associated virus (AAV) assembly-activating protein is not an essential requirement for capsid assembly of AAV serotypes 4, 5, and 11. J Virol 91

  28. Grimwood J, Gordon LA, Olsen A et al (2004) The DNA sequence and biology of human chromosome 19. Nature 428:529–535

    Article  CAS  PubMed  Google Scholar 

  29. Tullis GE, Shenk T (2000) Efficient replication of adeno-associated virus type 2 vectors: a cis-acting element outside of the terminal repeats and a minimal size. J Virol 74:11511–11521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gao G, Vandenberghe LH, Alvira MR, Lu Y, Calcedo R, Zhou X, Wilson JM (2004) Clades of adeno-associated viruses are widely disseminated in human tissues. J Virol 78:6381–6388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Colon-Thillet R, Jerome KR, Stone D (2021) Optimization of AAV vectors to target persistent viral reservoirs. Virol J 18:85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Asokan A, Schaffer DV, Samulski RJ (2012) The AAV vector toolkit: poised at the clinical crossroads. Mol Ther 20:699–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wu Z, Asokan A, Samulski RJ (2006) Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol Ther 14:316–327

    Article  CAS  PubMed  Google Scholar 

  34. Agbandje-McKenna M, Kleinschmidt J (2011) AAV capsid structure and cell interactions. Methods Mol Biol 807:47–92

    Article  CAS  PubMed  Google Scholar 

  35. Ivanchenko MV, Hanlon KS, Hathaway DM, Klein AJ, Peters CW, Li Y, Tamvakologos PI, Nammour J, Maguire CA, Corey DP (2021) AAV-S: a versatile capsid variant for transduction of mouse and primate inner ear. Mol Ther Methods Clin Dev 21:382–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee EJ, Guenther CM, Suh J (2018) Adeno-associated virus (AAV) vectors: rational design strategies for capsid engineering. Curr Opin Biomed Eng 7:58–63

    Article  PubMed  PubMed Central  Google Scholar 

  37. Vozenilek AE, Blackburn CMR, Schilke RM, Chandran S, Castore R, Klein RL, Woolard MD (2018) AAV8-mediated overexpression of mPCSK9 in liver differs between male and female mice. Atherosclerosis 278:66–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Moretti A, Fonteyne L, Giesert F et al (2020) Somatic gene editing ameliorates skeletal and cardiac muscle failure in pig and human models of Duchenne muscular dystrophy. Nat Med 26:207–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ikeda Y, Sun Z, Ru X, Vandenberghe LH, Humphreys BD (2018) Efficient gene transfer to kidney mesenchymal cells using a synthetic adeno-associated viral vector. J Am Soc Nephrol 29:2287–2297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Carvalho LS, Xiao R, Wassmer SJ et al (2018) Synthetic adeno-associated viral vector efficiently targets mouse and nonhuman primate retina in vivo. Hum Gene Ther 29:771–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Landegger LD, Pan B, Askew C et al (2017) A synthetic AAV vector enables safe and efficient gene transfer to the mammalian inner ear. Nat Biotechnol 35:280–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chiha W, Bartlett CA, Petratos S, Fitzgerald M, Harvey AR (2020) Intravitreal application of AAV-BDNF or mutant AAV-CRMP2 protects retinal ganglion cells and stabilizes axons and myelin after partial optic nerve injury. Exp Neurol 326:113167

    Article  CAS  PubMed  Google Scholar 

  43. Berry GE, Asokan A (2016) Cellular transduction mechanisms of adeno-associated viral vectors. Curr Opin Virol 21:54–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cronin T, Vandenberghe LH, Hantz P et al (2014) Efficient transduction and optogenetic stimulation of retinal bipolar cells by a synthetic adeno-associated virus capsid and promoter. EMBO Mol Med 6:1175–1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dalkara D, Byrne LC, Klimczak RR, Visel M, Yin L, Merigan WH, Flannery JG, Schaffer DV (2013) In vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous. Sci Transl Med 5:189ra176

  46. Isgrig K, McDougald DS, Zhu J, Wang HJ, Bennett J, Chien WW (2019) AAV2.7m8 is a powerful viral vector for inner ear gene therapy. Nat Commun 10:427

  47. Wright JF (2009) Transient transfection methods for clinical adeno-associated viral vector production. Hum Gene Ther 20:698–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Morgenstern JP, Land H (1990) A series of mammalian expression vectors and characterisation of their expression of a reporter gene in stably and transiently transfected cells. Nucleic Acids Res 18:1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Van Craenenbroeck K, Vanhoenacker P, Haegeman G (2000) Episomal vectors for gene expression in mammalian cells. Eur J Biochem 267:5665–5678

    Article  PubMed  Google Scholar 

  50. Gray SJ, Foti SB, Schwartz JW et al (2011) Optimizing promoters for recombinant adeno-associated virus-mediated gene expression in the peripheral and central nervous system using self-complementary vectors. Hum Gene Ther 22:1143–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Qin JY, Zhang L, Clift KL, Hulur I, Xiang AP, Ren BZ, Lahn BT (2010) Systematic comparison of constitutive promoters and the doxycycline-inducible promoter. PLoS ONE 5:e10611

    Article  PubMed  PubMed Central  Google Scholar 

  52. Powell SK, Rivera-Soto R, Gray SJ (2015) Viral expression cassette elements to enhance transgene target specificity and expression in gene therapy. Discov Med 19:49–57

    PubMed  PubMed Central  Google Scholar 

  53. Lock M, Alvira M, Vandenberghe LH, Samanta A, Toelen J, Debyser Z, Wilson JM (2010) Rapid, simple, and versatile manufacturing of recombinant adeno-associated viral vectors at scale. Hum Gene Ther 21:1259–1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cecchini S, Virag T, Kotin RM (2011) Reproducible high yields of recombinant adeno-associated virus produced using invertebrate cells in 0.02- to 200-liter cultures. Hum Gene Ther 22:1021–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Thorne BA, Takeya RK, Peluso RW (2009) Manufacturing recombinant adeno-associated viral vectors from producer cell clones. Hum Gene Ther 20:707–714

    Article  CAS  PubMed  Google Scholar 

  56. Wright JF (2014) AAV empty capsids: for better or for worse? Mol Ther 22:1–2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Potter M, Lins B, Mietzsch M, Heilbronn R, Van Vliet K, Chipman P, Agbandje-McKenna M, Cleaver BD, Clement N, Byrne BJ, Zolotukhin S (2014) A simplified purification protocol for recombinant adeno-associated virus vectors. Mol Ther Methods Clin Dev 1:14034

    Article  PubMed  PubMed Central  Google Scholar 

  58. Choi VW, McCarty DM, Samulski RJ (2006) Host cell DNA repair pathways in adeno-associated viral genome processing. J Virol 80:10346–10356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dalwadi DA, Calabria A, Tiyaboonchai A, Posey J, Naugler WE, Montini E, Grompe M (2021) AAV integration in human hepatocytes. Mol Ther 29:2898–2909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Miao CH, Snyder RO, Schowalter DB, Patijn GA, Donahue B, Winther B, Kay MA (1998) The kinetics of rAAV integration in the liver. Nat Genet 19:13–15

    Article  CAS  PubMed  Google Scholar 

  61. Nakai H, Wu X, Fuess S, Storm TA, Munroe D, Montini E, Burgess SM, Grompe M, Kay MA (2005) Large-scale molecular characterization of adeno-associated virus vector integration in mouse liver. J Virol 79:3606–3614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hüser D, Gogol-Döring A, Lutter T, Weger S, Winter K, Hammer E-M, Cathomen T, Reinert K, Heilbronn R (2010) Integration preferences of wildtype AAV-2 for consensus rep-binding sites at numerous loci in the human genome. PLoS Pathog 6:e1000985–e1000985

    Article  PubMed  PubMed Central  Google Scholar 

  63. Chamberlain K, Riyad JM, Weber T (2016) Expressing transgenes that exceed the packaging capacity of adeno-associated virus capsids. Hum Gene Ther Methods 27:1–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Akil O (2020) Dual and triple AAV delivery of large therapeutic gene sequences into the inner ear. Hear Res 394:107912

    Article  PubMed  Google Scholar 

  65. Muhuri M, Maeda Y, Ma H, Ram S, Fitzgerald KA, Tai PW, Gao G (2021) Overcoming innate immune barriers that impede AAV gene therapy vectors. J Clin Invest 131

  66. Ronzitti G, Gross D-A, Mingozzi F (2020) Human immune responses to adeno-associated virus (AAV) vectors. Front Immunol 11

  67. Sun JY, Anand-Jawa V, Chatterjee S, Wong KK (2003) Immune responses to adeno-associated virus and its recombinant vectors. Gene Ther 10:964–976

    Article  CAS  PubMed  Google Scholar 

  68. Martino AT, Markusic DM (2020) Immune response mechanisms against AAV vectors in animal models. Mol Ther Methods Clin Dev 17:198–208

    Article  CAS  PubMed  Google Scholar 

  69. Mingozzi F, High KA (2013) Immune responses to AAV vectors: overcoming barriers to successful gene therapy. Blood 122:23–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang L, Calcedo R, Bell P, Lin J, Grant RL, Siegel DL, Wilson JM (2011) Impact of pre-existing immunity on gene transfer to nonhuman primate liver with adeno-associated virus 8 vectors. Hum Gene Ther 22:1389–1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zaiss AK, Cotter MJ, White LR, Clark SA, Wong NC, Holers VM, Bartlett JS, Muruve DA (2008) Complement is an essential component of the immune response to adeno-associated virus vectors. J Virol 82:2727–2740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rabinowitz J, Chan YK, Samulski RJ (2019) Adeno-associated virus (AAV) versus immune response. Viruses 11

  73. Suzuki J, Hashimoto K, Xiao R, Vandenberghe LH, Liberman MC (2017) Cochlear gene therapy with ancestral AAV in adult mice: complete transduction of inner hair cells without cochlear dysfunction. Sci Rep 7:45524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tan F, Chu C, Qi J et al (2019) AAV-ie enables safe and efficient gene transfer to inner ear cells. Nat Commun 10:3733

    Article  PubMed  PubMed Central  Google Scholar 

  75. Hashimoto K, Hickman TT, Suzuki J, Ji L, Kohrman DC, Corfas G, Liberman MC (2019) Protection from noise-induced cochlear synaptopathy by virally mediated overexpression of NT3. Sci Rep 9:15362

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ulfendahl M, Scarfone E, Flock A, Le Calvez S, Conradi P (2000) Perilymphatic fluid compartments and intercellular spaces of the inner ear and the organ of Corti. Neuroimage 12:307–313

    Article  CAS  PubMed  Google Scholar 

  77. Richard C, Courbon G, Laroche N, Prades JM, Vico L, Malaval L (2017) Inner ear ossification and mineralization kinetics in human embryonic development — microtomographic and histomorphological study. Sci Rep 7:4825

    Article  PubMed  PubMed Central  Google Scholar 

  78. Yoshimura H, Shibata SB, Ranum PT, Smith RJH (2018) Enhanced viral-mediated cochlear gene delivery in adult mice by combining canal fenestration with round window membrane inoculation. Sci Rep 8:2980

    Article  PubMed  PubMed Central  Google Scholar 

  79. Jie H, Tao S, Liu L, Xia L, Charko A, Yu Z, Bance M, Yin S, Robertson GS, Wang J (2015) Cochlear protection against cisplatin by viral transfection of X-linked inhibitor of apoptosis protein across round window membrane. Gene Ther 22:546–552

    Article  CAS  PubMed  Google Scholar 

  80. Chien WW, McDougald DS, Roy S, Fitzgerald TS, Cunningham LL (2015) Cochlear gene transfer mediated by adeno-associated virus: comparison of two surgical approaches. Laryngoscope 125:2557–2564

    Article  CAS  PubMed  Google Scholar 

  81. Shu Y, Tao Y, Wang Z, Tang Y, Li H, Dai P, Gao G, Chen ZY (2016) Identification of adeno-associated viral vectors that target neonatal and adult mammalian inner ear cell subtypes. Hum Gene Ther 27:687–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Omichi R, Yoshimura H, Shibata SB, Vandenberghe LH, Smith RJH (2020) Hair cell transduction efficiency of single- and dual-AAV serotypes in adult murine cochleae. Mol Ther Methods Clin Dev 17:1167–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Swan EE, Mescher MJ, Sewell WF, Tao SL, Borenstein JT (2008) Inner ear drug delivery for auditory applications. Adv Drug Deliv Rev 60:1583–1599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tao Y, Huang M, Shu Y et al (2018) Delivery of adeno-associated virus vectors in adult mammalian inner-ear cell subtypes without auditory dysfunction. Hum Gene Ther 29:492–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Suzuki M, Kaga K (1999) Development of blood-labyrinth barrier in the semicircular canal ampulla of the rat. Hear Res 129:27–34

    Article  CAS  PubMed  Google Scholar 

  86. Suzuki M, Yamasoba T, Kaga K (1998) Development of the blood-labyrinth barrier in the rat. Hear Res 116:107–112

    Article  CAS  PubMed  Google Scholar 

  87. Shibata SB, Ranum PT, Moteki H, Pan B, Goodwin AT, Goodman SS, Abbas PJ, Holt JR, Smith RJH (2016) RNA interference prevents autosomal-dominant hearing loss. Am J Hum Genet 98:1101–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wang Y, Sun Y, Chang Q, Ahmad S, Zhou B, Kim Y, Li H, Lin X (2013) Early postnatal virus inoculation into the scala media achieved extensive expression of exogenous green fluorescent protein in the inner ear and preserved auditory brainstem response thresholds. J Gene Med 15:123–133

    Article  CAS  PubMed  Google Scholar 

  89. Gyorgy B, Meijer EJ, Ivanchenko MV et al (2019) Gene transfer with AAV9-PHP.B rescues hearing in a mouse model of usher syndrome 3A and transduces hair cells in a non-human primate. Mol Ther Methods Clin Dev 13:1–13

    Article  CAS  PubMed  Google Scholar 

  90. Ivanchenko MV, Hanlon KS, Devine MK, Tenneson K, Emond F, Lafond JF, Kenna MA, Corey DP, Maguire CA (2020) Preclinical testing of AAV9-PHP.B for transgene expression in the non-human primate cochlea. Hear Res 394:107930

  91. Lee J, Nist-Lund C, Solanes P, Goldberg H, Wu J, Pan B, Schneider BL, Holt JR (2020) Efficient viral transduction in mouse inner ear hair cells with utricle injection and AAV9-PHP.B. Hear Res 394:107882

  92. Ohlemiller KK (2019) Mouse methods and models for studies in hearing. J Acoust Soc Am 146:3668

    Article  PubMed  Google Scholar 

  93. Ho MK, Li X, Wang J, Ohmen JD, Friedman RA (2014) FVB/NJ mice demonstrate a youthful sensitivity to noise-induced hearing loss and provide a useful genetic model for the study of neural hearing loss. Audiol Neurotol Extra 4:1–11

    Article  PubMed  PubMed Central  Google Scholar 

  94. Wu F, Hill K, Fang Q, He Z, Zheng H, Wang X, Xiong H, Sha SH (2022) Traumatic-noise-induced hair cell death and hearing loss is mediated by activation of CaMKKbeta. Cell Mol Life Sci 79:249

    Article  CAS  PubMed  Google Scholar 

  95. Wang X, Yuan C, Huang B et al (2019) Developing a versatile shotgun cloning strategy for single-vector-based multiplex expression of short interfering RNAs (siRNAs) in mammalian cells. ACS Synthe Bio 8:2092–2105

    Article  CAS  Google Scholar 

  96. Agrawal N, Dasaradhi PV, Mohmmed A, Malhotra P, Bhatnagar RK, Mukherjee SK (2003) RNA interference: biology, mechanism, and applications. Microbiol Mol Biol 67:657–685

    Article  CAS  Google Scholar 

  97. Morrison C (2018) Alnylam prepares to land first RNAi drug approval. Nat Rev Drug Discovery 17:156–157

    Article  CAS  PubMed  Google Scholar 

  98. Bellosta S, Rossi C, Alieva AS, Catapano AL, Corsini A, Baragetti A (2022) Cholesterol lowering biotechnological strategies: from monoclonal antibodies to antisense therapies. a pre-clinical perspective review. Cardiovasc Drugs Ther

  99. Chen H, Xing Y, Xia L, Chen Z, Yin S, Wang J (2018) AAV-mediated NT-3 overexpression protects cochleae against noise-induced synaptopathy. Gene Ther 25:251–259

    Article  PubMed  PubMed Central  Google Scholar 

  100. Liu Y, Okada T, Shimazaki K et al (2008) Protection against aminoglycoside-induced ototoxicity by regulated AAV vector-mediated GDNF gene transfer into the cochlea. Mol Ther 16:474–480

    Article  PubMed  Google Scholar 

  101. Zheng G, Zhu Z, Zhu K, Wei J, Jing Y, Duan M (2013) Therapeutic effect of adeno-associated virus (AAV)-mediated ADNF-9 expression on cochlea of kanamycin-deafened guinea pigs. Acta Otolaryngol 133:1022–1029

    Article  CAS  PubMed  Google Scholar 

  102. Akil O, Blits B, Lustig LR, Leake PA (2019) Virally mediated overexpression of glial-derived neurotrophic factor elicits age- and dose-dependent neuronal toxicity and hearing loss. Hum Gene Ther 30:88–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Cooper LB, Chan DK, Roediger FC, Shaffer BR, Fraser JF, Musatov S, Selesnick SH, Kaplitt MG (2006) AAV-mediated delivery of the caspase inhibitor XIAP protects against cisplatin ototoxicity. Otol Neurotol 27:484–490

    Article  PubMed  Google Scholar 

  104. Qi F, Zhang R, Chen J et al (2019) Down-regulation of Cav1.3 in auditory pathway promotes age-related hearing loss by enhancing calcium-mediated oxidative stress in male mice. Aging 11:6490–6502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Mukherjee S, Kuroiwa M, Oakden W et al (2021) Local magnetic delivery of adeno-associated virus AAV2(quad Y-F)-mediated BDNF gene therapy restores hearing after noise injury. Mol Ther

  106. Gu X, Wang D, Xu Z, Wang J, Guo L, Chai R, Li G, Shu Y, Li H (2021) Prevention of acquired sensorineural hearing loss in mice by in vivo Htra2 gene editing. Genome Biol 22:86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. El Andari J, Grimm D (2021) Production, processing, and characterization of synthetic AAV gene therapy vectors. Biotechnol J 16:e2000025

    Article  PubMed  Google Scholar 

  108. Penaud-Budloo M, Francois A, Clement N, Ayuso E (2018) Pharmacology of recombinant adeno-associated virus production. Mol Ther Methods Clin Dev 8:166–180

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Jochen Schacht for his valuable comments on the manuscript, and we thank Andra Talaska for proofreading the manuscript.

Funding

R01 DC009222, from the National Institute on Deafness and Other Communication Disorders, National Institutes of Health, supports Dr. Sha’s research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suhua Sha.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, F., Sambamurti, K. & Sha, S. Current Advances in Adeno-Associated Virus-Mediated Gene Therapy to Prevent Acquired Hearing Loss. JARO 23, 569–578 (2022). https://doi.org/10.1007/s10162-022-00866-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-022-00866-y

Keywords

Navigation