Skip to main content

Advertisement

Log in

Natural-derived compounds and their mechanisms in potential autosomal dominant polycystic kidney disease (ADPKD) treatment

  • Review article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

Autosomal dominant polycystic kidney disease (ADPKD) is a monogenic kidney disorder that impairs renal functions progressively leading to kidney failure. The disease affects between 1:400 and 1:1000 ratio of the people worldwide. It is caused by the mutated PKD1 and PKD2 genes which encode for the defective polycystins. Polycystins mimic the receptor protein or protein channel and mediate aberrant cell signaling that causes cystic development in the renal parenchyma. The cystic development is driven by the increased cyclic AMP stimulating fluid secretion and infinite cell growth. In recent years, natural product-derived small molecules or drugs targeting specific signaling pathways have caught attention in the drug discovery discipline. The advantages of natural products over synthetic drugs enthusiast researchers to utilize the medicinal benefits in various diseases including ADPKD.

Conclusion

Overall, this review discusses some of the previously studied and reported natural products and their mechanisms of action which may potentially be redirected into ADPKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Grantham JJ, Chapman AB, Torres VE. Volume progression in autosomal dominant polycystic kidney disease: the major factor determining clinical outcomes. Clin J Am Soc Nephrol. 2006;1(1):148–57.

    Article  PubMed  Google Scholar 

  2. Chebib FT, Torres VE. Autosomal dominant polycystic kidney disease: core curriculum 2016. Am J Kidney Dis. 2016;67(5):792–810.

    Article  PubMed  Google Scholar 

  3. Torres VE, Harris PC. Strategies targeting cAMP signaling in the treatment of polycystic kidney disease. J Am Soc Nephrol. 2014;25(1):18–32.

    Article  CAS  PubMed  Google Scholar 

  4. Mustafa RA, Alan SJ. Burden of proof for tolvaptan in ADPKD: did REPRISE provide the answer? Clin J Am Soc Nephrol. 2018;13(7):1107–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Blair HA, Keating GM. Tolvaptan: a review in autosomal dominant polycystic kidney disease. Drugs. 2015;75(15):1797–806.

    Article  CAS  PubMed  Google Scholar 

  6. Calixto JB. The role of natural products in modern drug discovery. An Acad Bras Cienc. 2019;91 Suppl 3:e20190105. 

  7. Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci. 2016;5:e47.

  8. Liu Y, Luo X, Yang C, Yang T, Zhou J, Shi S. Impact of quercetin-induced changes in drug-metabolizing enzyme and transporter expression on the pharmacokinetics of cyclosporine in rats. Mol Med Rep. 2016;14(4):3073–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Persu A, Devuyst O. Transepithelial chloride secretion and cystogenesis in autosomal dominant polycystic kidney disease. Nephrol Dial Transplant. 2000;15(6):747–50.

    Article  CAS  PubMed  Google Scholar 

  10. Graffe CC, Bech JN, Lauridsen TG, Pedersen EB. Urinary excretion of AQP2 and ENaC in autosomal dominant polycystic kidney disease during basal conditions and after a hypertonic saline infusion. Am J Physiol Renal Physiol. 2012;302(8):F917–27.

    Article  CAS  PubMed  Google Scholar 

  11. Zaika O, Mamenko M, Staruschenko A, Pochynyuk O. Direct activation of ENaC by angiotensin II: recent advances and new insights. Curr Hypertens Rep. 2013;15(1):17–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhu Y, Teng T, Wang H, Guo H, Du L, Yang B, et al. Quercetin inhibits renal cyst growth in vitro and via parenteral injection in a polycystic kidney disease mouse model. Food Funct. 2018;9(1):389–96.

    Article  CAS  PubMed  Google Scholar 

  13. Harris Z, Donovan MG, Branco GM, Limesand KH, Burd R. Quercetin as an emerging anti-melanoma agent: a four-focus area therapeutic development strategy. Front Nutr. 2016;3:48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Rafiq RA, Quadri A, Nazir LA, Peerzada K, Ganai BA, Tasduq SA. A potent inhibitor of phosphoinositide 3-kinase (PI3K) and mitogen activated protein (MAP) kinase signalling, quercetin (3,3(,4(,5,7-pentahydroxyflavone) promotes cell death in ultraviolet (UV)-B-irradiated B16F10 melanoma cells. PLoS ONE. 2015;10(7):e0131253.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Waheed A, Ludtmann M, Pakes N, Robery S, Kuspa A, Dinh C, et al. Naringenin inhibits the growth of D ictyostelium and MDCK-derived cysts in a TRPP2 (polycystin-2)-dependent manner. Br J Pharmacol. 2014;171(10):2659–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang Y, Ehrlich BE. Structural studies of the C-terminal tail of polycystin-2 (PC2) reveal insights into the mechanisms used for the functional regulation of PC2. J Physiol. 2016;594(15):4141–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fragiadaki M, Lannoy M, Themanns M, Maurer B, Leonhard WN, Peters DJ, et al. STAT5 drives abnormal proliferation in autosomal dominant polycystic kidney disease. Kidney Int. 2017;91(3):575–86.

    Article  CAS  PubMed  Google Scholar 

  18. Song HM, Park GH, Eo HJ, Lee JW, Kim MK, Lee JR, et al. Anti-proliferative effect of naringenin through p38-dependent downregulation of cyclin D1 in human colorectal cancer cells. Biomol Ther (Seoul). 2015;23(4):339.

    Article  CAS  Google Scholar 

  19. Wang Z, Wang S, Zhao J, Yu C, Hu Y, Tu Y, et al. Naringenin ameliorates renovascular hypertensive renal damage by normalizing the balance of renin–angiotensin system components in rats. Int J Med Sci. 2019;16(5):644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bernstein KE, Khan Z, Giani JF, Cao D-Y, Bernstein EA, Shen XZ. Angiotensin-converting enzyme in innate and adaptive immunity. Nat Rev Nephrol. 2018;14(5):325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Loghman-Adham M, Soto CE, Inagami T, Cassis L. The intrarenal renin-angiotensin system in autosomal dominant polycystic kidney disease. Am J Physiol Renal Physiol. 2004;287(4):F775–88.

    Article  CAS  PubMed  Google Scholar 

  22. Rinschen MM, Schermer B, Benzing T. Vasopressin-2 receptor signaling and autosomal dominant polycystic kidney disease: from bench to bedside and back again. J Am Soc Nephrol. 2014;25(6):1140–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hama T, Park F. Heterotrimeric G protein signaling in polycystic kidney disease. Physiol Genomics. 2016;48(7):429–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gonçalves LM, Valente IM, Rodrigues JA. An overview on cardamonin. J Med Food. 2014;17(6):633–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. He J, Zhou H, Meng J, Zhang S, Li X, Wang S, et al. Cardamonin retards progression of autosomal dominant polycystic kidney disease via inhibiting renal cyst growth and interstitial fibrosis. Pharmacol Res. 2020;155:104751.

    Article  CAS  PubMed  Google Scholar 

  26. Liu Y. Renal fibrosis: new insights into the pathogenesis and therapeutics. Kidney Int. 2006;69(2):213–7.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang YE. Non-Smad pathways in TGF-β signaling. Cell Res. 2009;19(1):128–39.

    Article  CAS  PubMed  Google Scholar 

  28. Norman J. Fibrosis and progression of autosomal dominant polycystic kidney disease (ADPKD). Biochim Biophys Acta. 2011;1812(10):1327–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Graham GG, Punt J, Arora M, Day RO, Doogue MP, Duong J, et al. Clinical pharmacokinetics of metformin. Clin Pharmacokinet. 2011;50(2):81–98.

    Article  CAS  PubMed  Google Scholar 

  30. Owen MR, Doran E, Halestrap AP. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J. 2000;348(3):607–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol. 2012;13(4):251–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Johanns M, Lai Y-C, Hsu M-F, Jacobs R, Vertommen D, Van Sande J, et al. AMPK antagonizes hepatic glucagon-stimulated cyclic AMP signalling via phosphorylation-induced activation of cyclic nucleotide phosphodiesterase 4B. Nat Commun. 2016;7(1):1–12.

    Article  CAS  Google Scholar 

  33. Cheng SH, Rich DP, Marshall J, Gregory RJ, Welsh MJ, Smith AE. Phosphorylation of the R domain by cAMP-dependent protein kinase regulates the CFTR chloride channel. Cell. 1991;66(5):1027–36.

    Article  CAS  PubMed  Google Scholar 

  34. Salani B, Del Rio A, Marini C, Sambuceti G, Cordera R, Maggi D. Metformin, cancer and glucose metabolism. Endocr Relat Cancer. 2014;21(6):R461–71.

    Article  PubMed  CAS  Google Scholar 

  35. Wang X, Ren Y. Rheum tanguticum, an endangered medicinal plant endemic to China. J Med Plants Res. 2009;3(13):1195–203.

    CAS  Google Scholar 

  36. Liu X, Kim CN, Yang J, Jemmerson R, Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Zhongguo Yao Li Xue Bao Acta Pharmacologica Sinica. 1996;86(1):147–57.

    CAS  Google Scholar 

  37. Li F, Wang S-C, Wang X, Ren Q-Y, Wang W, Shang G-W, et al. Novel exploration of cathartic pharmacology induced by rhubarb. Zhongguo Zhong Yao Za Zhi China J Chin Mater Med. 2008;33(4):481.

    Google Scholar 

  38. Zhou X, Chen Q. Biochemical study of Chinese rhubarb. XXII. Inhibitory effect of anthraquinone derivatives on Na+-K+-ATPase of the rabbit renal medulla and their diuretic action. Yao Xue Xue Bao Acta pharmaceutica Sinica. 1988;23(1):17.

    CAS  PubMed  Google Scholar 

  39. Asawa RR, Danchik C, Zahkarov A, Chen Y, Voss T, Jadhav A, et al. A high-throughput screening platform for polycystic kidney disease (PKD) drug repurposing utilizing murine and human ADPKD cells. Sci Rep. 2020;10(1):1–12.

    Article  CAS  Google Scholar 

  40. Dong X, Fu J, Yin X, Cao S, Li X, Lin L, et al. Emodin: a review of its pharmacology, toxicity and pharmacokinetics. Phytother Res. 2016;30(8):1207–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jaiswal AS, Marlow BP, Gupta N, Narayan S. β-catenin-mediated transactivation and cell–cell adhesion pathways are important in curcumin (diferuylmethane)-induced growth arrest and apoptosis in colon cancer cells. Oncogene. 2002;21(55):8414–27.

    Article  CAS  PubMed  Google Scholar 

  42. Sun Y, Wang X, Zhou Q, Lu Y, Zhang H, Chen Q, et al. Inhibitory effect of emodin on migration, invasion and metastasis of human breast cancer MDA-MB-231 cells in vitro and in vivo. Oncol Rep. 2015;33(1):338–46.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang X, Chen Y, Zhang T, Zhang Y. Inhibitory effect of emodin on human hepatoma cell line SMMC-7721 and its mechanism. Afr Health Sci. 2015;15(1):97–100.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Xue J, Ding W, Liu Y. Anti-diabetic effects of emodin involved in the activation of PPARγ on high-fat diet-fed and low dose of streptozotocin-induced diabetic mice. Fitoterapia. 2010;81(3):173–7.

    Article  CAS  PubMed  Google Scholar 

  45. Mihaylova MM, Shaw RJ. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol. 2011;13(9):1016–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Priyadarsini KI. The chemistry of curcumin: from extraction to therapeutic agent. Molecules. 2014;19(12):20091–112.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Patera F, Cudzich-Madry A, Huang Z, Fragiadaki M. Renal expression of JAK2 is high in polycystic kidney disease and its inhibition reduces cystogenesis. Sci Rep. 2019;9(1):1–10.

    Article  CAS  Google Scholar 

  48. Hahn Y-I, Kim S-J, Choi B-Y, Cho K-C, Bandu R, Kim KP, et al. Curcumin interacts directly with the Cysteine 259 residue of STAT3 and induces apoptosis in H-Ras transformed human mammary epithelial cells. Sci Rep. 2018;8(1):1–14.

    Article  Google Scholar 

  49. Choudhuri T, Pal S, Das T, Sa G. Curcumin selectively induces apoptosis in deregulated cyclin D1-expressed cells at G2 phase of cell cycle in a p53-dependent manner. J Biol Chem. 2005;280(20):20059–68.

    Article  CAS  PubMed  Google Scholar 

  50. Bharti AC, Donato N, Singh S, Aggarwal BB. Curcumin (diferuloylmethane) down-regulates the constitutive activation of nuclear factor–κB and IκBα kinase in human multiple myeloma cells, leading to suppression of proliferation and induction of apoptosis. Blood. 2003;101(3):1053–62.

    Article  CAS  PubMed  Google Scholar 

  51. Mukhopadhyay A, Banerjee S, Stafford LJ, Xia C, Liu M, Aggarwal BB. Curcumin-induced suppression of cell proliferation correlates with down-regulation of cyclin D1 expression and CDK4-mediated retinoblastoma protein phosphorylation. Oncogene. 2002;21(57):8852–61.

    Article  CAS  PubMed  Google Scholar 

  52. Leonhard WN, van der Wal A, Novalic Z, Kunnen SJ, Gansevoort RT, Breuning MH, et al. Curcumin inhibits cystogenesis by simultaneous interference of multiple signaling pathways: in vivo evidence from a Pkd1-deletion model. Am J Physiol Renal Physiol. 2011;300(5):F1193–202.

    Article  CAS  PubMed  Google Scholar 

  53. Borges GA, Elias ST, Amorim B, de Lima CL, Coletta RD, Castilho RM, et al. Curcumin downregulates the PI3K–AKT–mTOR pathway and inhibits growth and progression in head and neck cancer cells. Phytother Res. 2020;34:3311–24.

    Article  CAS  PubMed  Google Scholar 

  54. Cianciulli A, Calvello R, Porro C, Trotta T, Salvatore R, Panaro MA. PI3k/Akt signalling pathway plays a crucial role in the anti-inflammatory effects of curcumin in LPS-activated microglia. Int Immunopharmacol. 2016;36:282–90.

    Article  CAS  PubMed  Google Scholar 

  55. Woo J-H, Kim Y-H, Choi Y-J, Kim D-G, Lee K-S, Bae JH, et al. Molecular mechanisms of curcumin-induced cytotoxicity: induction of apoptosis through generation of reactive oxygen species, down-regulation of Bcl-X L and IAP, the release of cytochrome c and inhibition of Akt. Carcinogenesis. 2003;24(7):1199–208.

    Article  CAS  PubMed  Google Scholar 

  56. Hanson J, De Oliveira B. Stevioside and related sweet diterpenoid glycosides. Nat Prod Rep. 1993;10(3):301–9.

    Article  CAS  PubMed  Google Scholar 

  57. Shibata H, Sawa Y, Oka T-A, Sonoke S, Kim KK, Yoshioka M, et al. Steviol and steviol-glycoside: glucosyltransferase activities in Stevia rebaudiana Bertoni-purification and partial characterization. Arch Biochem Biophys. 1995;321(2):390–6.

    Article  CAS  PubMed  Google Scholar 

  58. Chatsudthipong V, Muanprasat CJP, therapeutics. Stevioside and related compounds: therapeutic benefits beyond sweetness. Pharmacol Ther. 2009;121(1):41–54.

    Article  CAS  PubMed  Google Scholar 

  59. Yuajit C, Muanprasat C, Gallagher A-R, Fedeles SV, Kittayaruksakul S, Homvisasevongsa S, et al. Steviol retards renal cyst growth through reduction of CFTR expression and inhibition of epithelial cell proliferation in a mouse model of polycystic kidney disease. Biochem Pharmacol. 2014;88(3):412–21.

    Article  CAS  PubMed  Google Scholar 

  60. Xu J, Ji J, Yan X-H. Cross-talk between AMPK and mTOR in regulating energy balance. Crit Rev Food Sci Nutr. 2012;52(5):373–81.

    Article  CAS  PubMed  Google Scholar 

  61. Laplante M, Sabatini DM. mTOR signaling at a glance. J Cell Sci. 2009;122(20):3589–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Noitem R, Yuajit C, Soodvilai S, Muanprasat C, Chatsudthipong V. Steviol slows renal cyst growth by reducing AQP2 expression and promoting AQP2 degradation. Biomed Pharmacother. 2018;101:754–62.

    Article  CAS  PubMed  Google Scholar 

  63. Leuenroth SJ, Crews CM. Studies on calcium dependence reveal multiple modes of action for triptolide. Chem Biol. 2005;12(12):1259–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Leuenroth SJ, Okuhara D, Shotwell JD, Markowitz GS, Yu Z, Somlo S, et al. Triptolide is a traditional Chinese medicine-derived inhibitor of polycystic kidney disease. Proc Natl Acad Sci. 2007;104(11):4389–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Leuenroth SJ, Bencivenga N, Igarashi P, Somlo S, Crews CM. Triptolide reduces cystogenesis in a model of ADPKD. J Am Soc Nephrol. 2008;19(9):1659–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bhunia AK, Piontek K, Boletta A, Liu L, Qian F, Xu P-N, et al. PKD1 induces p21waf1 and regulation of the cell cycle via direct activation of the JAK-STAT signaling pathway in a process requiring PKD2. Cell. 2002;109(2):157–68.

    Article  CAS  PubMed  Google Scholar 

  67. Jing Y, Wu M, Zhang D, Chen D, Yang M, Mei S, et al. Triptolide delays disease progression in an adult rat model of polycystic kidney disease through the JAK2–STAT3 pathway. Am J Physiol Renal Physiol. 2018;315(3):F479–86.

    Article  CAS  PubMed  Google Scholar 

  68. Bertelli AA, Das DK. Grapes, wines, resveratrol, and heart health. J Cardiovasc Pharmacol. 2009;54(6):468–76.

    Article  CAS  PubMed  Google Scholar 

  69. Saldanha JF, Leal VDO, Stenvinkel P, Carraro-Eduardo JC, Mafra D. Resveratrol: why is it a promising therapy for chronic kidney disease patients? Oxid Med Cell Longev. 2013;2013:963217.

    Article  Google Scholar 

  70. Kitada M, Koya D. Renal protective effects of resveratrol. Oxid Med Cell Longev. 2013;2013:568093.

  71. Moradi H, Vaziri ND. Effect of resveratrol on progression of polycystic kidney disease: a case of cautious optimism. Nephrol Dial Transplant. 2016;31(11):1755–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wu M, Gu J, Mei S, Xu D, Jing Y, Yao Q, et al. Resveratrol delays polycystic kidney disease progression through attenuation of nuclear factor κB-induced inflammation. Nephrol Dial Transplant. 2016;31(11):1826–34.

    Article  CAS  PubMed  Google Scholar 

  73. Finkel T, Deng C-X, Mostoslavsky R. Recent progress in the biology and physiology of sirtuins. Nature. 2009;460(7255):587–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yuan J, Minter-Dykhouse K, Lou Z. A c-Myc–SIRT1 feedback loop regulates cell growth and transformation. J Cell Biol. 2009;185(2):203–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhou X, Fan LX, Sweeney WE, Denu JM, Avner ED, Li X. Sirtuin 1 inhibition delays cyst formation in autosomal-dominant polycystic kidney disease. J Clin Invest. 2013;123(7):3084–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhang H-N, Li L, Gao P, Chen H-Z, Zhang R, Wei Y-S, et al. Involvement of the p65/RelA subunit of NF-κB in TNF-α-induced SIRT1 expression in vascular smooth muscle cells. Biochem Biophys Res Commun. 2010;397(3):569–75.

    Article  CAS  PubMed  Google Scholar 

  77. Luo J, Nikolaev AY, Imai S-I, Chen D, Su F, Shiloh A, et al. Negative control of p53 by Sir2α promotes cell survival under stress. Cell. 2001;107(2):137–48.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded by Fundamental Research Grant Scheme (FRGS) [Grant number: FP086-2019A; reference code: FRGS/1/2019/SKK08/UM/02/10].

Author information

Authors and Affiliations

Authors

Contributions

Wrote or contributed to the writing of manuscript: RM, SKL, KCO, KHC, HCC.

Corresponding author

Correspondence to Hwa Chia Chai.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest exists.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahendran, R., Lim, S.K., Ong, K.C. et al. Natural-derived compounds and their mechanisms in potential autosomal dominant polycystic kidney disease (ADPKD) treatment. Clin Exp Nephrol 25, 1163–1172 (2021). https://doi.org/10.1007/s10157-021-02111-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-021-02111-x

Keywords

Navigation