Skip to main content

Advertisement

Log in

Phenotypes of patients with systemic sclerosis in the Chinese Han population: a cluster analysis

  • ORIGINAL ARTICLE
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Objective

Systemic sclerosis (SSc) is a heterogeneous connective tissue disease that is commonly subdivided into limited cutaneous SSc (lcSSc) and diffuse cutaneous SSc (dcSSc) based on the extent of skin involvement. This subclassification may not reflect the full range of clinical phenotypic variation. This study aimed to investigate clinical features and aggregation of patients with SSc in Chinese based on SSc manifestations and organ involvements, in order to achieve precise treatment of SSc early prevention of complications.

Methods

In total 287 SSc patients were included in this study. A cluster analysis was applied according to 13 clinical and serologic variables to determine subgroups of patients. Survival rates between obtained clusters and risk factors affecting prognosis were also compared.

Result

In this study, six clusters were observed: cluster 1 (n = 66) represented the skin type, with all patients showing skin thickening. In cluster 2 (n = 56), most patients had vascular and articular involvement. Cluster 3 (n = 14) individuals mostly had cardiac and pulmonary involvement. In cluster 4 (n = 52), the gastrointestinal type, 50 patients presented with stomach symptoms and 28 patients presented with esophageal symptoms. In cluster 5 (n = 50), patients barely had any major organ involvement. Cluster 6 (n = 49) included 46% of all patients presenting with renal crisis.

Conclusion

The results of our cluster analysis study implied that limiting SSc patient subgroups to those based only on skin involvement might not capture the full heterogeneity of the disease. Organ damage and antibody profiles should be considered when identifying homogeneous patient groups with a specific prognosis.

Key Points

• Provides a new method of categorizing SSc patients.

• Can better explain disease progression and guide subsequent treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Argula RG, Ward C, Feghali-Bostwick C (2019) Therapeutic challenges and advances in the management of systemic sclerosis-related pulmonary arterial hypertension (SSc-PAH). Ther Clin Risk Manag 13(15):1427–1442. https://doi.org/10.2147/TCRM.S219024

    Article  Google Scholar 

  2. Coral-Alvarado PX, Garces MF, Caminos JE, Iglesias-Gamarra A, Restrepo JF, Quintana G (2010) Serum endoglin levels in patients suffering from systemic sclerosis and elevated systolic pulmonary arterial pressure. Int J Rheumatol 2010:969383. https://doi.org/10.1155/2010/969383

    Article  PubMed  PubMed Central  Google Scholar 

  3. Valentini G (2015) Undifferentiated connective tissue disease at risk for systemic sclerosis (SSc) (so far referred to as very early/early SSc or pre-SSc). Autoimmun Rev 14(3):210–213. https://doi.org/10.1016/j.autrev.2014.11.002

    Article  PubMed  Google Scholar 

  4. Adigun R, Goyal A, Hariz A (2023) Systemic sclerosis. 2022 May 8. In: StatPearls (Internet). Treasure Island (FL): StatPearls Publishing

  5. Tieu A, Chaigne B, Dunogué B et al (2022) Autoantibodies versus skin fibrosis extent in systemic sclerosis: a case-control study of inverted phenotypes. Diagnostics (Basel) 12(5):1067. https://doi.org/10.3390/diagnostics12051067

    Article  CAS  PubMed  Google Scholar 

  6. LeRoy EC, Black C, Fleischmajer R et al (1988) Scleroderma (systemic sclerosis): classification, subsets and pathogenesis. J Rheumatol 15(2):202–205

    CAS  PubMed  Google Scholar 

  7. Medsger TA Jr (2003) Natural history of systemic sclerosis and the assessment of disease activity, severity, functional status, and psychologic well-being. Rheum Dis Clin North Am 29(2):255–73, vi. https://doi.org/10.1016/s0889-857x(03)00023-1

  8. Santiago M, Baron M, Hudson M et al (2007) Antibodies to RNA polymerase III in systemic sclerosis detected by ELISA. J Rheumatol 34(7):1528–1534

    CAS  PubMed  Google Scholar 

  9. Zanatta E, Huscher D, Ortolan A et al (2022) Phenotype of limited cutaneous systemic sclerosis patients with positive anti-topoisomerase I antibodies: data from the EUSTAR cohort. Rheumatology (Oxford) 61(12):4786–4796. https://doi.org/10.1093/rheumatology/keac188

    Article  CAS  PubMed  Google Scholar 

  10. Sobanski V, Giovannelli J, Allanore Y et al (2019) Phenotypes determined by cluster analysis and their survival in the prospective European scleroderma trials and research cohort of patients with systemic sclerosis. Arthritis Rheumatol 71(9):1553–1570. https://doi.org/10.1002/art.40906

    Article  PubMed  PubMed Central  Google Scholar 

  11. Joven BE, Escribano P, Andreu JL et al (2018) 2013 ACR/EULAR systemic sclerosis classification criteria in patients with associated pulmonary arterial hypertension. Semin Arthritis Rheum 47(6):870–876. https://doi.org/10.1016/j.semarthrit.2017.10.006

    Article  PubMed  Google Scholar 

  12. Humbert M, Kovacs G, Hoeper MM et al (2023) ESC/ERS Scientific Document Group. 2022 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Respir J 6;61(1):2200879. https://doi.org/10.1183/13993003.00879-2022

  13. Hinchcliff M, Fischer A, Schiopu E, Steen VD, PHAROS Investigators (2011) Pulmonary hypertension assessment and recognition of outcomes in scleroderma (PHAROS): baseline characteristics and description of study population. J Rheumatol 38(10):2172–9. https://doi.org/10.3899/jrheum.101243

    Article  PubMed  PubMed Central  Google Scholar 

  14. Katzenstein AL, Myers JL (2000) Nonspecific interstitial pneumonia and the other idiopathic interstitial pneumonias: classification and diagnostic criteria. Am J Surg Pathol 24(1):1–3. https://doi.org/10.1097/00000478-200001000-00001

    Article  CAS  PubMed  Google Scholar 

  15. Cole A, Ong VH, Denton CP (2023) Renal disease and systemic sclerosis: an update on scleroderma renal crisis. Clin Rev Allergy Immunol 64(3):378–391. https://doi.org/10.1007/s12016-022-08945-x

    Article  CAS  PubMed  Google Scholar 

  16. Khedoe P, Marges E, Hiemstra P, Ninaber M, Geelhoed M (2020) Interstitial lung disease in patients with systemic sclerosis: toward personalized-medicine-based prediction and drug screening models of systemic sclerosis-related interstitial lung disease (SSc-ILD). Front Immunol 4(11):1990. https://doi.org/10.3389/fimmu.2020.01990

    Article  CAS  Google Scholar 

  17. Bruni C, Frech T, Manetti M et al (2018) Vascular leaking, a pivotal and early pathogenetic event in systemic sclerosis: should the door be closed? Front Immunol 7(9):2045. https://doi.org/10.3389/fimmu.2018.02045

    Article  CAS  Google Scholar 

  18. Tahiat A, Allam I, Abdessemed A et al (2020) Autoantibody profile in a cohort of Algerian patients with systemic sclerosis. Ann Biol Clin (Paris) 78(2):126–133. https://doi.org/10.1684/abc.2020.1532

    Article  CAS  PubMed  Google Scholar 

  19. Goodfield MJ (1994) The skin in systemic sclerosis. Clin Dermatol 12(2):229–36. https://doi.org/10.1016/s0738-081x(94)90326-3

    Article  CAS  PubMed  Google Scholar 

  20. Ghosh SK, Bandyopadhyay D, Saha I, Barua JK (2012) Mucocutaneous and demographic features of systemic sclerosis: a profile of 46 patients from eastern India. Indian J Dermatol 57(3):201–205. https://doi.org/10.4103/0019-5154.96193

    Article  PubMed  PubMed Central  Google Scholar 

  21. Denton CP, Khanna D (2017) Systemic sclerosis. Lancet 390(10103):1685–1699. https://doi.org/10.1016/S0140-6736(17)30933-9

    Article  PubMed  Google Scholar 

  22. Kowal-Bielecka O, Fransen J, Avouac J et al (2017) Update of EULAR recommendations for the treatment of systemic sclerosis. Ann Rheum Dis 76(8):1327–1339. https://doi.org/10.1136/annrheumdis-2016-209909

    Article  PubMed  Google Scholar 

  23. Galluccio F (2022) Rapid and sustained effect of ozone major autohemotherapy for Raynaud and hand edema in systemic sclerosis patient: a case report. Cureus 14(11):e31831. https://doi.org/10.7759/cureus.31831

    Article  PubMed  PubMed Central  Google Scholar 

  24. Avouac J, Guerini H, Wipff J et al (2006) Radiological hand involvement in systemic sclerosis. Ann Rheum Dis 65(8):1088–1092. https://doi.org/10.1136/ard.2005.044602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schumacher HR Jr (1973) Joint involvement in progressive systemic sclerosis (scleroderma): a light and electron microscopic study of synovial membrane and fluid. Am J Clin Pathol 60(5):593–600. https://doi.org/10.1093/ajcp/60.5.593

    Article  PubMed  Google Scholar 

  26. Avouac J, Clements PJ, Khanna D, Furst DE, Allanore Y (2012) Articular involvement in systemic sclerosis. Rheumatology (Oxford) 51(8):1347–1356. https://doi.org/10.1093/rheumatology/kes041

    Article  PubMed  Google Scholar 

  27. Boucly A, Weatherald J, Savale L et al (2017) Risk assessment, prognosis and guideline implementation in pulmonary arterial hypertension. Eur Respir J 50(2):1700889. https://doi.org/10.1183/13993003.00889-2017

    Article  CAS  PubMed  Google Scholar 

  28. Rhodes CJ, Wharton J, Swietlik EM et al (2022) Using the plasma proteome for risk stratifying patients with pulmonary arterial hypertension. Am J Respir Crit Care Med 205(9):1102–1111. https://doi.org/10.1164/rccm.202105-1118OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mukerjee D, Yap LB, Holmes AM et al (2003) Significance of plasma N-terminal pro-brain natriuretic peptide in patients with systemic sclerosis-related pulmonary arterial hypertension. Respir Med 97(11):1230–1236. https://doi.org/10.1016/s0954-6111(03)00254-3

    Article  CAS  PubMed  Google Scholar 

  30. Thakkar V, Stevens WM, Prior D et al (2012) N-terminal pro-brain natriuretic peptide in a novel screening algorithm for pulmonary arterial hypertension in systemic sclerosis: a case-control study. Arthritis Res Ther 14(3):R143. https://doi.org/10.1186/ar3876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nagaya N, Uematsu M, Satoh T et al (1999) Serum uric acid levels correlate with the severity and the mortality of primary pulmonary hypertension. Am J Respir Crit Care Med 160(2):487–492. https://doi.org/10.1164/ajrccm.160.2.9812078

    Article  CAS  PubMed  Google Scholar 

  32. Hansi N, Thoua N, Carulli M et al (2014) Consensus best practice pathway of the UK scleroderma study group: gastrointestinal manifestations of systemic sclerosis. Clin Exp Rheumatol 32(6 Suppl 86):S-214-21

    Google Scholar 

  33. Thonhofer R, Siegel C, Trummer M, Graninger W (2012) Early endoscopy in systemic sclerosis without gastrointestinal symptoms. Rheumatol Int 32(1):165–168. https://doi.org/10.1007/s00296-010-1595-y

    Article  PubMed  Google Scholar 

  34. Carlson DA, Crowell MD, Kimmel JN et al (2016) Loss of peristaltic reserve, determined by multiple rapid swallows, is the most frequent esophageal motility abnormality in patients with systemic sclerosis. Clin Gastroenterol Hepatol 14(10):1502–1506. https://doi.org/10.1016/j.cgh.2016.03.039

    Article  PubMed  PubMed Central  Google Scholar 

  35. Katz PO, Gerson LB, Vela MF (2013) Guidelines for the diagnosis and management of gastroesophageal reflux disease. Am J Gastroenterol 108(3):308–28; quiz 329. https://doi.org/10.1038/ajg.2012.444. Erratum in: Am J Gastroenterol. 2013 Oct;108(10):1672.

  36. Smale BF, Mullen JL, Buzby GP, Rosato EF (1981) The efficacy of nutritional assessment and support in cancer surgery. Cancer 47(10):2375–2381. https://doi.org/10.1002/1097-0142(19810515)47:10%3c2375::aid-cncr2820471009%3e3.0.co;2-i

    Article  CAS  PubMed  Google Scholar 

  37. Onodera T, Goseki N, Kosaki G (1984) Prognostic nutritional index in gastrointestinal surgery of malnourished cancer patients. Nihon Geka Gakkai Zasshi 85(9):1001–5 (Japanese)

    CAS  PubMed  Google Scholar 

  38. Cadwell JB, Afonso AM, Shahrokni A (2020) Prognostic nutritional index (PNI), independent of frailty is associated with six-month postoperative mortality. J Geriatr Oncol 11(5):880–884. https://doi.org/10.1016/j.jgo.2020.03.013

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hasegawa E, Kobayashi D, Kurosawa Y et al (2020) Nutritional status as the risk factor of serious infection in patients with rheumatoid arthritis. Mod Rheumatol 30(6):982–989. https://doi.org/10.1080/14397595.2019.1681653

    Article  CAS  PubMed  Google Scholar 

  40. Hunzelmann N, Genth E, Krieg T et al (2008) The registry of the German Network for Systemic Scleroderma: frequency of disease subsets and patterns of organ involvement. Rheumatology (Oxford) 47(8):1185–1192. https://doi.org/10.1093/rheumatology/ken179

    Article  CAS  PubMed  Google Scholar 

  41. Adigun R, Goyal A, Hariz A (2023) Systemic sclerosis. 2022 May 8. In: StatPearls (Internet). Treasure Island (FL): StatPearls Publishing

  42. Sobanski V, Giovannelli J, Allanore Y et al (2019) Phenotypes determined by cluster analysis and their survival in the prospective European scleroderma trials and research cohort of patients with systemic sclerosis. Arthritis Rheumatol 71(9):1553–1570. https://doi.org/10.1002/art.40906

    Article  PubMed  PubMed Central  Google Scholar 

  43. Srivastava N, Hudson M, Tatibouet S, et al; Canadian Scleroderma Research Group (CSRG) (2015) Thinking outside the box--the associations with cutaneous involvement and autoantibody status in systemic sclerosis are not always what we expect. Semin Arthritis Rheum 45(2):184–9. https://doi.org/10.1016/j.semarthrit.2015.04.009.

  44. Höppner J, Tabeling C, Casteleyn V et al (2023) Comprehensive autoantibody profiles in systemic sclerosis: clinical cluster analysis. Front Immunol 4(13):1045523. https://doi.org/10.3389/fimmu.2022.1045523

    Article  CAS  Google Scholar 

  45. Pendergrass SA, Lemaire R, Francis IP et al (2012) Intrinsic gene expression subsets of diffuse cutaneous systemic sclerosis are stable in serial skin biopsies. J Invest Dermatol 132(5):1363–1373. https://doi.org/10.1038/jid.2011.472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gourh P, Safran SA, Alexander T et al (2020) HLA and autoantibodies define scleroderma subtypes and risk in African and European Americans and suggest a role for molecular mimicry. Proc Natl Acad Sci U S A 117(1):552–562. https://doi.org/10.1073/pnas.1906593116

    Article  CAS  PubMed  Google Scholar 

  47. Dantas AT, Almeida AR, Sampaio MCPD et al (2018) Different profile of cytokine production in patients with systemic sclerosis and association with clinical manifestations. Immunol Lett 198:12–16. https://doi.org/10.1016/j.imlet.2018.03.011

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Youth fund project, Grant NO.82201994) and the Natural Science Foundation of Shandong Province (General Program, Grant NO. ZR2022MH016 and Youth fund project, Grant NO. ZR2021QH043).

Author information

Authors and Affiliations

Authors

Contributions

Yaqi Zhao and WeiXu participated in the study design and literature review, performed statistical analysis and presentation of the results, and participated in the drafting and review of the manuscript. Yaqi Zhao, WeiXu, Wenfeng Gao, Xinya Li, Baocheng Liu, and Suyan Yan collected clinical data. Zhenzhen Ma and Qingrui Yang participated in the study design, drafting, and review of the manuscript. All authors contributed to the article and approved the submitted version.

Corresponding authors

Correspondence to Zhenzhen Ma or Qingrui Yang.

Ethics declarations

Ethics approval

The study was conducted according to the guidelines of the Declaration of Helsinki and approved by the Ethics Committee of Shandong Provincial Hospital, Shandong First Medical University (NSFC:NO.2022–413). All participants signed the informed consent form.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Disclosures

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Significance and innovations

1. Cluster analysis of systemic sclerosis patients has been studied internationally, but less so in the Chinese population. The present study shows how the subclassification of cases by subgroups (clusters) that consider organ damage, antibodies, and demographic data can better explain the trajectories of the disease and could have subsequent implications in terms of prognosis or treatments that can be better explained in future prospective studies.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 268 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Xu, W., Gao, W. et al. Phenotypes of patients with systemic sclerosis in the Chinese Han population: a cluster analysis. Clin Rheumatol 43, 1635–1646 (2024). https://doi.org/10.1007/s10067-024-06936-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-024-06936-1

Keywords

Navigation