Skip to main content

Advertisement

Log in

A retrospective cohort study of Epstein-Barr virus infection status and systemic lupus erythematosus

  • ORIGINAL ARTICLE
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Objectives

Systemic lupus erythematosus (SLE) and the Epstein-Barr virus (EBV) are very closely related. This study estimated the impact of EBV infection status on clinical manifestations and disease remission in patients with SLE.

Method

A retrospective study was performed using electronic health records of patients with SLE. The SLE disease activity index (SLEDAI-2 K) was used to assess disease activity. VCAIgM or EAIgM positive or EBVDNA copies ≥ 50 IU/mL were defined as lytic infection group, EBNA-IgG or VCAIgG-positive and who were negative for both VCAIgM and EAIgM with EBVDNA copies < 50 IU/mL were defined as the latent infection group. The endpoint (disease remission) was defined as a decrease in SLEDAI-2 K score of ≥ 1 grade or ≥ 4 points from baseline. The association between EBV infection status and disease remission was assessed using propensity score weighting and multivariable Cox regression models.

Results

There were 75 patients with SLE in the EBV lytic infection group and 142 patients in the latent infection group. The SLEDAI-2 K score was higher in the lytic infection group (10.00 (6.25, 16.00) vs. 8.00 (5.00, 10.00), Z = 3.96, P < 0.001). There was a significant difference in the effect of EBV lytic infection on disease remission compared to latent infection (HR 0.30, 95% CI 0.19–0.49, P < 0.001).

Conclusions

Patients with SLE with lytic EBV infection have higher disease activity and take longer to achieve remission. Our study furthers our understanding of the relationship between SLE and EBV infection and may inform better treatment practices in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lazar S, Kahlenberg JM (2023) Systemic lupus erythematosus: new diagnostic and therapeutic approaches. Annu Rev Med 74:339–352. https://doi.org/10.1146/annurev-med-043021-032611

    Article  CAS  PubMed  Google Scholar 

  2. Rees F, Doherty M, Grainge MJ, Lanyon P, Davenport G, Zhang W (2016) Mortality in systemic lupus erythematosus in the United Kingdom 1999–2012. Rheumatology 55:854–860. https://doi.org/10.1093/rheumatology/kev424

    Article  PubMed  Google Scholar 

  3. Iwata S, Tanaka Y (2022) Association of viral infection with the development and pathogenesis of systemic lupus erythematosus. Front Med (Lausanne) 25(9):849120. https://doi.org/10.3389/fmed.2022.849120

    Article  Google Scholar 

  4. Jog NR, James JA (2021Feb) Epstein Barr virus and autoimmune responses in systemic lupus erythematosus. Front Immunol 3(11):623944. https://doi.org/10.3389/fimmu.2020.623944

    Article  CAS  Google Scholar 

  5. Epstein MA, Achong BG, Barr YM (1964) Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet 7335:702. https://doi.org/10.1016/s0140-6736(64)91524-7

    Article  Google Scholar 

  6. Damania B, Kenney SC, Raab-Traub N (2022Sep 29) Epstein-Barr virus: biology and clinical disease. Cell 185(20):3652–3670. https://doi.org/10.1016/j.cell.2022.08.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. James JA, Kaufman KM, Farris AD, Taylor-Albert E, Lehman TJ, Harley JB (1997Dec 15) An increased prevalence of Epstein-Barr virus infection in young patients suggests a possible etiology for systemic lupus erythematosus. J Clin Invest 100(12):3019–3026. https://doi.org/10.1172/JCI119856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Han L, Zhang Y, Wang Q, Xin M, Yang K, Lei K et al (2018) Epstein-Barr virus infection and type I interferon signature in patients with systemic lupus erythematosus. Lupus 27(6):947–54. https://doi.org/10.1177/0961203317753069

    Article  CAS  Google Scholar 

  9. Li ZX, Zeng S, Wu HX, Zhou Y (2019) The risk of systemic lupus erythematosus associated with Epstein-Barr virus infection: a systematic review and meta-analysis. Clin Exp Med 19(1):23–36. https://doi.org/10.1007/s10238-018-0535-0

    Article  CAS  PubMed  Google Scholar 

  10. Aringer M, Costenbader K, Daikh D, Brinks R, Mosca M, Ramsey-Goldman R et al (2019) 2019 European League Against Rheumatism/American College of Rheumatology classification criteria for systemic lupus erythematosus. Ann Rheum Dis 78(9):1151–1159. https://doi.org/10.1136/annrheumdis-2018-214819

    Article  PubMed  Google Scholar 

  11. Gladman DD, Ibañez D, Urowitz MB (2002) Systemic lupus erythematosus disease activity index 2000. J Rheumatol 29(2):288–291

    PubMed  Google Scholar 

  12. Fanouriakis A, Kostopoulou M, Alunno A, Aringer M, Bajema I, Boletis JN et al (2019) 2019 update of the EULAR recommendations for the management of systemic lupus erythematosus. Ann Rheum Dis 78(6):736–745. https://doi.org/10.1136/annrheumdis-2019-215089

    Article  CAS  PubMed  Google Scholar 

  13. Gladman D, Ginzler E, Goldsmith C, Fortin P, Liang M, Urowitz M et al (1996) The development and initial validation of the Systemic Lupus International Collaborating Clinics/American College of Rheumatology damage index for systemic lupus erythematosus. Arthritis Rheum 39(3):363–369. https://doi.org/10.1002/art.1780390303

    Article  CAS  PubMed  Google Scholar 

  14. Houen G, Trier NH (2021) Epstein-Barr virus and systemic autoimmune diseases. Front Immunol 7(11):587380. https://doi.org/10.3389/fimmu.2020.587380

    Article  CAS  Google Scholar 

  15. Danza A, Ruiz-Irastorza G (2013) Infection risk in systemic lupus erythematosus patients: susceptibility factors and preventive strategies. Lupus 22(12):1286–1294. https://doi.org/10.1177/0961203313493032

    Article  CAS  PubMed  Google Scholar 

  16. França SAS, Viana JBGO, Góes HCA, Fonseca RRS, Laurentino RV, Costa IB et al (2022) Epidemiology of the Epstein-Barr virus in autoimmune inflammatory rheumatic diseases in Northern Brazil. Viruses 14(4):694. https://doi.org/10.3390/v14040694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Aygun D, Kuskucu MA, Sahin S, Adrovic A, Barut K, Yıldız M et al (2020) Epstein-Barr virus, cytomegalovirus and BK polyomavirus burden in juvenile systemic lupus erythematosus: correlation with clinical and laboratory indices of disease activity. Lupus 29(10):1263–1269. https://doi.org/10.1177/0961203320940029

    Article  CAS  PubMed  Google Scholar 

  18. Piroozmand A, Haddad Kashani H, Zamani B (2017) Correlation between Epstein-Barr virus infection and disease activity of systemic lupus erythematosus: a cross-sectional study. Asian Pac J Cancer Prev 18(2):523–527. https://doi.org/10.22034/APJCP.2017.18.2.523

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jog NR, Young KA, Munroe ME, Harmon MT, Guthridge JM, Kelly JA et al (2019) Association of Epstein-Barr virus serological reactivation with transitioning to systemic lupus erythematosus in at-risk individuals. Ann Rheum Dis 78(9):1235–1241. https://doi.org/10.1136/annrheumdis-2019-215361

    Article  CAS  PubMed  Google Scholar 

  20. Harley JB, Chen X, Pujato M, Miller D, Maddox A, Forney C et al (2018) Transcription factors operate across disease loci, with EBNA2 implicated in autoimmunity. Nat Genet 50(5):699–707. https://doi.org/10.1038/s41588-018-0102-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lu X, Chen X, Forney C, Donmez O, Miller D, Parameswaran S et al (2021) Global discovery of lupus genetic risk variant allelic enhancer activity. Nat Commun 12(1):1611. https://doi.org/10.1038/s41467-021-21854-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Karrar S, Graham DS (2018) Abnormal B cell development in systemic lupus erythematosus: what the genetics tell us. Arthritis Rheumatol 70:496–507. https://doi.org/10.1002/art.40396

  23. Laurynenka V, Ding L, Kaufman KM, James JA, Harley JB (2022Feb) A high prevalence of anti-EBNA1 heteroantibodies in systemic lupus erythematosus (SLE) supports anti-EBNA1 as an origin for SLE autoantibodies. Front Immunol 17(13):830993. https://doi.org/10.3389/fimmu.2022.830993

    Article  CAS  Google Scholar 

  24. Kanduc D, Shoenfeld Y (2020) From anti-EBV immune responses to the EBV diseasome via cross-reactivity. Glob Med Genet 7(2):51–63. https://doi.org/10.1055/s-0040-1715641

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zucchi D, Silvagni E, Elefante E, Signorini V, Cardelli C, Trentin F et al (2023) Systemic lupus erythematosus: one year in review 2023. Clin Exp Rheumatol 41(5):997–1008. https://doi.org/10.55563/clinexprheumatol/4uc7e8

    Article  PubMed  Google Scholar 

  26. Freitas EC, de Oliveira MS, Monticielo OA (2017) Pristane-induced lupus: considerations on this experimental model. Clin Rheumatol 36(11):2403–2414. https://doi.org/10.1007/s10067-017-3811-6

    Article  PubMed  Google Scholar 

  27. Jarrett AF, Armstrong AA, Alexander E (1996) Epidemiology of EBV and Hodgkin’s lymphoma. Ann Oncol 7(Suppl 4):5–10. https://doi.org/10.1093/annonc/7.suppl_4.s5

    Article  PubMed  Google Scholar 

  28. de Melo SJ, Pinheiro-Silva R, Dhyani A, Pontes GS (2020Oct) Cytomegalovirus and Epstein-Barr infections: prevalence and impact on patients with hematological diseases. Biomed Res Int 2020:1627824. https://doi.org/10.1155/2020/1627824

    Article  Google Scholar 

  29. Miao Y, Zhang J, Chen Q, Xing L, Qiu T, Zhu H et al (2022Aug) Spectrum and trigger identification of hemophagocytic lymphohistiocytosis in adults: a single-center analysis of 555 cases. Front Immunol 12(13):970183. https://doi.org/10.3389/fimmu.2022.970183

    Article  CAS  Google Scholar 

  30. Gavriilaki E, de Latour RP, Risitano AM (2022) Advancing therapeutic complement inhibition in hematologic diseases: PNH and beyond. Blood 139(25):3571–3582. https://doi.org/10.1182/blood.2021012860

    Article  CAS  PubMed  Google Scholar 

  31. Wang Z, Bo L, Xu Y, Liu H, Zhao Y (2021) Features of serum complement C3 and C4 levels in autoimmune hemolytic anemia patients. Int J Lab Hematol 43(5):1154–1158. https://doi.org/10.1111/ijlh.13469

    Article  PubMed  Google Scholar 

  32. Ba H, Xu L, Peng H, Lin Y, Li X, Wang H et al (2019) Chronic active Epstein-Barr virus infection with systemic vasculitis and pulmonary arterial hypertension in a child. Front Pediatr 7:219. https://doi.org/10.3389/fped.2019.00219

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kano K, Katayama T, Takeguchi S, Asanome A, Takahashi K, Saito T et al (2017) Biopsy-proven case of Epstein-Barr virus (EBV)-associated vasculitis of the central nervous system. Neuropathology 37(3):259–264. https://doi.org/10.1111/neup.12356

    Article  PubMed  Google Scholar 

  34. Dong X, Liu L, Wang Y, Yang X, Wang W, Lin L et al (2019) Novel heterogeneous mutation of TNFAIP3 in a Chinese patient with Behçet-like phenotype and persistent EBV viremia. J Clin Immunol 39(2):188–194. https://doi.org/10.1007/s10875-019-00604-9

    Article  CAS  PubMed  Google Scholar 

  35. Tao L, Zhang T, Zhou Y, Liu X, Ding C, Yu J et al (2023) Epstein-Barr virus downregulates the α7 nicotinic acetylcholine receptor of CD8+ T lymphocytes might associate with coronary artery lesions in Kawasaki disease patients. Microbes Infect 25(7):105168. https://doi.org/10.1016/j.micinf.2023.105168

    Article  CAS  PubMed  Google Scholar 

  36. Al Sawah S, Zhang X, Zhu B, Magder LS, Foster SA, Iikuni N et al (2015) Effect of corticosteroid use by dose on the risk of developing organ damage over time in systemic lupus erythematosus-the Hopkins Lupus Cohort. Lupus Sci Med 2(1):e000066. https://doi.org/10.1136/lupus-2014-000066

    Article  PubMed  PubMed Central  Google Scholar 

  37. Urowitz MB, Aranow C, Asukai Y, Bass DL, Bruce IN, Chauhan D et al (2022) Impact of belimumab on organ damage in systemic lupus erythematosus. Arthritis Care Res (Hoboken) 74(11):1822–1828. https://doi.org/10.1002/acr.24901

    Article  CAS  PubMed  Google Scholar 

  38. Lu JJ, Chen DY, Hsieh CW, Lan JL, Lin FJ, Lin SH (2007) Association of Epstein-Barr virus infection with systemic lupus erythematosus in Taiwan. Lupus 16(3):168–175. https://doi.org/10.1177/0961203306075800

    Article  CAS  PubMed  Google Scholar 

  39. Ming B, Bai M, Cai S, Wang B, Zhong J, Dong L (2023Jan) Clinical characteristics of SLE patients infected with Epstein-Barr virus and potential associated risk factors. Clin Rheumatol 42(1):101–109. https://doi.org/10.1007/s10067-022-06369-8

    Article  PubMed  Google Scholar 

  40. Liu J, Gao H, Xu LP, Mo XD, Liu R, Liang S et al (2020Mar) Immunosuppressant indulges EBV reactivation and related lympholytic disease by inhibiting Vδ2+ T cells activities after hematopoietic transplantation for blood malignancies. J Immunother Cancer 8(1):e000208. https://doi.org/10.1136/jitc-2019-000208

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Wenling Social Development Science and Technology Program (No. 2023S00052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Sun.

Ethics declarations

Disclosures

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key points

• The proportion of vasculitis, serositis, and hematological involvement was higher in patients with SLE and lytic EBV infection.

• A higher proportion of patients with SLE and lytic EBV infection required methylprednisolone pulse therapy than those with latent infection.

• Patients with SLE and lytic EBV infection were more likely to be treated with more than two immunosuppressive agents or agents combined with multitarget biologic therapy.

• Patients with SLE and latent EBV infection reached disease remission significantly sooner than those with lytic infection group.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Tu, J., Huang, M. et al. A retrospective cohort study of Epstein-Barr virus infection status and systemic lupus erythematosus. Clin Rheumatol 43, 1521–1530 (2024). https://doi.org/10.1007/s10067-024-06917-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-024-06917-4

Keywords

Navigation