Skip to main content

Advertisement

Log in

Evaluation of immediately loaded mandibular four vertical versus tilted posterior implants supporting fixed detachable restorations without versus with posterior cantilevers

  • Original Article
  • Published:
Oral and Maxillofacial Surgery Aims and scope Submit manuscript

Abstract

Background

Distally inclining posterior implants may be technically challenging in certain situations. The presence of a posterior cantilever can also exert unfavorable forces on supporting implants. The aim of the present study was to evaluate and compare peri-implant soft and hard tissues around 4 mandibular interforaminal implants having tilted posterior implants with posterior cantilevers, versus vertical implants, 2 in the interforaminal region and 2 in the first molar regions, without posterior cantilevers. All implants supported full-arch fixed detachable restorations opposing complete dentures.

Material and methods

A total of 80 implants were placed flapless in the mandibles of 20 edentulous participants. Four implants were placed for every participant, who were randomly assigned into 2 equal groups. Axial group implants were vertically aligned, with 2 implants in the interforaminal area and 2 in the molar area. Tilted group implants have 2 anterior axial and 2 posterior distally inclined implants. Interim screw-retained prostheses converted from pre-existing dentures were immediately fabricated and loaded on the same day of surgery. After awaiting period of 3 months, all participants received fixed detachable metal acrylic resin definitive restorations. A follow-up protocol of 3, 6, and 12 months was scheduled to assess the modified gingival index, modified plaque index, peri-implant probing depth, implant stability, and marginal bone level and bone density changes.

Results

No statistically significant differences (P > .05) were found in the modified gingival index, modified plaque index, peri-implant probing depth, implant stability, bone density, and marginal bone level between the axial and tilted implant groups after the 1-year follow-up period.

Conclusion

Placing 4 flapless immediately loaded implants in mandibular edentulous patients that supported full-arch fixed restorations provided high implant and prosthodontic success rates whether posterior implants were tilted with posterior cantilevers or vertically aligned without posterior cantilevers.

Trial registration: Pan African Clinical Trial Registry database, PACTR201907776166846. Registered 3 July 2019, www.pactr.org.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

CBCT:

Cone-beam computed tomography

RFA:

Resonance frequency analysis

ISQ:

Implant stability quotient

MPI:

Modified plaque index

MGI:

Modified gingival index

PD:

Peri-implant probing depth

HU:

Hounsfield unit

References

  1. Khamis MM, Zaki HS, Rudy TE (1998) A comparison of the effect of different occlusal forms in mandibular implant overdentures. J Prosthet Dent 79:422–429

    Article  CAS  PubMed  Google Scholar 

  2. Malo P, Rangert B, Nobre MA (2003) ‘All-on-four’ immediate-function concept with Branemark system implants for completely edentulous mandibles: a retrospective clinical study. Clin Implant Dent Relat Res 5:2–9

    Article  PubMed  Google Scholar 

  3. Agliardi E, Clerico M, Ciancio P, Massironi D (2010) Immediate loading of full-arch fixed prostheses supported by axial and tilted implants for the treatment of edentulous atrophic mandibles. Quintessence Int 41:285–293

    PubMed  Google Scholar 

  4. Misch CE (2005) Mandibular full-arch implant fixed prosthetic options, in: Dental Implant Prosthetics, St Louis, Mo, Elsevier Mosby, pp 252–64.

  5. Eliasson A, Palmqvist S, Svenson B, Sondell K (2000) Five-year results with fixed complete-arch mandibular prostheses supported by 4 implants. Int J Oral Maxillofac Implants 15:505–510

    CAS  PubMed  Google Scholar 

  6. Greco GD, Jansen WC, Landre Junior J, Seraidarian PI (2009) Stress analysis on the free-end distal extension of an implant-supported mandibular complete denture. Braz Oral Res 23:182–189

    Article  PubMed  Google Scholar 

  7. Soydan SS, Cubuk S, Oguz Y, Uckan S (2013) Are success and survival rates of early implant placement higher than immediate implant placement? Int J Oral Maxillofac Surg 42:511–515

    Article  CAS  PubMed  Google Scholar 

  8. ELsyad MA, Hammouda NI (2017) Expansion of mandibular knife-edge ridge and simultaneous implant placement to retain overdentures: one-year clinical and radiographic results of a prospective study. Clin Implant Dent Relat Res. 19:167-79.

  9. Tolstunov L (2007) Implant zones of the jaws: implant location and related success rate. J Oral Implantol 33:211–220

    Article  PubMed  Google Scholar 

  10. Tanya M, Ratnadeep C, Marco S (2018) Bone dimension assessment for placement of implants in the interforaminal region of the mandible: a cone beam computed tomography study. Int J Appl Dent Sci 4:101–105

    Google Scholar 

  11. Malo P, Nobre M, Lopes A, Moss SM, Molina GJ (2011) A longitudinal study of the survival of all on 4 of follow-up implants in the mandible with up to 10 years. J Am Dent Assoc 142:310–320

    Article  PubMed  Google Scholar 

  12. Malhotra AO, Padmanabhan TV, Mohamed K, Natarajan S, Elavia U (2012) Load transfer in tilted implants with varying cantilever lengths in an all-on-four situation. Aust Dent J 57:440–445

    Article  CAS  PubMed  Google Scholar 

  13. Bellini CM, Romeo D, Galbusera F, Taschieri S, Raimondi MT, Zampelis A et al (2009) Comparison of tilted versus non-tilted implant-supported prosthetic designs for the restoration of the edentuous mandible: a biomechanical study. Int J Oral Maxillofac Implants 24:511–517

    PubMed  Google Scholar 

  14. McAlarney ME, Stavropoulos DN (1996) Determination of cantilever length-anterior-posterior spread ratio assuming failure criteria to be the compromise of the prosthesis retaining screw-prosthesis joint. Int J Oral Maxillofac Implants 11:331–339

    CAS  PubMed  Google Scholar 

  15. Taruna M, Chittaranjan B, Sudheer N, Tella S, Abusaad M (2014) Prosthodontic perspective to all-on-4 concept for dental implants. J Clin Diagn Res 8:16–19

    Google Scholar 

  16. Capelli M, Zuffetti F, Del Fabbro M, Testori T (2007) Immediate rehabilitation of the completely edentulous jaw with fixed prostheses supported by either upright or tilted implants: a multicenter clinical study. Int J Oral Maxillofac Implants 22:639–644

    PubMed  Google Scholar 

  17. Brånemark PI, Svensson B, van Steenberghe D (1995) Ten-year survival rates of fixed prostheses on four or six implants ad modum Brånemark in full edentulism. Clin Oral Implants Res 6:227–231

    Article  PubMed  Google Scholar 

  18. Fazi G, Tellini S, Vangi D, Branchi R (2011) Three-dimensional finite element analysis of different implant configurations for a mandibular fixed prosthesis. Int J Oral Maxillofac Implants 26:752–759

    PubMed  Google Scholar 

  19. Menini M, Bagnasco F, Pera P, Tealdo T, Pesce P (2018) Branemark Novum immediate loading rehabilitation of edentulous mandibles: case series with a 16-year follow-up. Int J Periodontics Restorative Dent 39:729–735

    Article  Google Scholar 

  20. Babbush CA, Kanawati A, Brokloff J (2013) A new approach to the all-on-four treatment concept using narrow platform Nobel active implants. J Oral Implantol 39:314–325

    Article  PubMed  Google Scholar 

  21. Maló P, de Araújo NM, Lopes A, Ferro A, Gravito I (2015) All-on-4 treatment concept for the rehabilitation of the completely edentulous mandible: a 7-year clinical and 5-year radiographic retrospective case series with risk assessment for implant failure and marginal bone level. Clin Implant Dent Relat Res 17:531–541

    Article  Google Scholar 

  22. Lopes A, Maló P, de Araújo NM, Sanchez-Fernández E (2015) The NobelGuide All-on-4 treatment concept for rehabilitation of edentulous jaws: a prospective report on medium- and long-term outcomes. Clin Implant Dent Relat Res 17:406–416

    Article  Google Scholar 

  23. Nedir R, Bischof M, Szmukler-moncler S, Belser UC, Samson J (2006) Prosthetic complications with dental implants: from an up-to-8-year experience in private practice. Int J Oral Maxillofac implants 21:919–928

    PubMed  Google Scholar 

  24. Fernandez EM, Gonzalez IG, Lanchares HD, Quevedo MAM, Velasco AB, Arenal AA (2018) Mandibular flexure and peri-implant bone stress distribution on an implant-supported fixed full-arch mandibular prosthesis: 3D finite element analysis. BioMed Research International 2018:9. https://doi.org/10.1155/2018/8241313

  25. Baghai R, Naini B (2009) Three-dimensional finite element analysis of the effect of 1-piece superstructure on mandibular flexure. Implant Dent 18(5):428–437

    Article  Google Scholar 

  26. Nokar S, Naini RB (2010) The effect of superstructure design on stress distribution in peri-implant bone during mandibular flexure. Int J Oral Maxillofac Implants 25(1):31–37

    PubMed  Google Scholar 

  27. Law C, Bennani V, Lyons K, Swain M (2012) Mandibular flexure and its significance on implant fixed prostheses: a review. J Prosthodont 21:219–224

    Article  PubMed  Google Scholar 

  28. Sivaraman K, Chopra A, Venkatesh SB (2016) Clinical importance of median mandibular flexure in oral rehabilitation: a review. J Oral Rehabil 43:215–225

    Article  CAS  PubMed  Google Scholar 

  29. Sadek SA, Abbas HM, Shoshan HS (2019) Immediate rehabilitation of atrophied mandible with “All on four” implant supported fixed prosthesis with and without cantilever extensions One year clinical. Egypt Dent J 65:2183–2197

    Article  Google Scholar 

  30. Pettersson A, Komiyama A, Hultin M, Näsström K, Klinge B (2012) Accuracy of virtually planned and template guided implant surgery on dentate patients. Clin Implant Dent Relat Res 14:527–537

    Article  PubMed  Google Scholar 

  31. Elian N, Jalbout ZN, Classi AJ, Wexler A, Sarment D, Tarnow DP (2008) Precision of flapless implant placement using real-time surgical navigation: a case series. Int J Oral Maxillofac Implants 23:1123–1127

    PubMed  Google Scholar 

  32. Malo P, de Araujo NM, Lopes A (2007) The use of computer-guided flapless implant surgery and four implants placed in immediate function to support a fixed denture: preliminary results after a mean follow-up period of thirteen months. J Prosthet Dent 97:26–34

    Article  Google Scholar 

  33. Balshi SF, Wolfinger GJ, Balshi TJ (2006) Surgical planning and prosthesis construction using computed tomography, CAD/CAM technology, and the internet for immediate loading of dental implants. J Esthet Restor Dent 18:312–323

    Article  PubMed  Google Scholar 

  34. Gehrke SA, da Silva UT, Del Fabbro M (2015) Does implant design affect implant primary stability? A resonance frequency analysis-based randomized split-mouth clinical trial. J Oral Implantol 41:e281–e286

    Article  PubMed  Google Scholar 

  35. Yunus B (2011) Assessment of the increased calcification of the jaw bone with CT-Scan after dental implant placement. Imaging Sci Dent 41:59–62

    Article  PubMed  PubMed Central  Google Scholar 

  36. Javed F, Ahmed HB, Crespi R, Romanos GE (2013) Role of primary stability for successful osseointegration of dental implants: factors of influence and evaluation. Interv Med Appl Sci 5:162–167

    PubMed  PubMed Central  Google Scholar 

  37. Jokstad A, Alkumru H (2014) Immediate function on the day of surgery compared with a delayed implant loading process in the mandible: a randomized clinical trial over 5 years. Clin Oral Implants Res 25:1325–1335

    Article  PubMed  Google Scholar 

  38. Pellizzer EP, Falcón-Antenucci RM, de Carvalho PS, Sánchez DM, Rinaldi GA, de Aguirre CC et al (2011) Influence of implant angulation with different crowns on stress distribution. J Craniofac Surg 22:434–437

    Article  PubMed  Google Scholar 

  39. Krennmair S, Weinlander M, Forstner T, Krennmair G, Stimmelmayr M (2016) Factors affecting peri-implant bone resorption in four implant supported mandibular full-arch restorations: a 3-year prospective study. J Clin Periodontol 43:92–101

    Article  PubMed  Google Scholar 

  40. Crespi R, Vinci R, Cappare P, Romanos GE, Gherlone E (2012) A clinical study of edentulous patients rehabilitated according to the “all on four” immediate function protocol. Int J Oral Maxillofac Implants 27:428–434

    PubMed  Google Scholar 

  41. Elsyad MA, Khirallah AS (2016) Circumferential bone loss around splinted and non-splinted immediately loaded implants retaining mandibular overdentures: a randomized controlled clinical trial using cone beam computed tomography. J Prosthet Dent 116:741–748

    Article  PubMed  Google Scholar 

  42. Aksta A (2017) Implant Dentistry, in Textbook of Prosthodontics, (ed 2). New Delhi, London, Panama, Jaypee Brothers Medical Publishers. 42.

  43. White G (1993) The construction of a mandibular fixed complete framework. In: White G (ed) Osseointegrated dental technology. Quintessence, Chicago, pp 59–113

    Google Scholar 

  44. Mombelli A, van Oosten MA, Schurch E Jr, Land NP (1987) The microbiota associated with successful or failing osseointegrated titanium implants. Oral Microbiol Immunol 2:145–151

    Article  CAS  PubMed  Google Scholar 

  45. Agliardi E, Panigatti S, Clericò M, Villa C, Malò P (2010) Immediate rehabilitation of the edentulous jaws with full fixed prostheses supported by four implants: interim results of a single cohort prospective study. Clin Oral Implants Res 21:459–465

    Article  PubMed  Google Scholar 

  46. Landázuri-Del Barrio RA, Cosyn J, De Paula WN, De Bruyn H, E Marcantonio Jr (2013) A prospective study on implants installed with flapless-guided surgery using the all-on-four concept in the mandible. Clin Oral Implants Res. 24:428–33.

  47. Lobene RR, Weatherford T, Ross NM, Lamm RA, Menaker L (1986) A modified gingival index for use in clinical trials. Clin Prev Dent 8:3–6

    CAS  PubMed  Google Scholar 

  48. Neiva RF, Neiva KG, Oh TJ, Wang H (2002) Clinical and morphological aspects of the implant/soft tissue interface. Int Chin J Dent 2:151–161

    Google Scholar 

  49. Herrero-Climent M, Santos-Garcia R, Jaramillo-Santos R, Romero-Ruiz MM, Fernandez-Palacin A, Lazaro-Calvo P et al (2013) Assessment of Osstell ISQ’s reliability for implant stability measurement: a cross-sectional clinical study. Med Oral Patol Oral Cir Bucal 18:877–882

    Article  Google Scholar 

  50. El-wahab KA, Aziz EA, Nada MA (2012) The effect of two loading protocols on the supporting structures of mini implants supporting mandibular overdenture. CPOI 3:16–27

    Google Scholar 

  51. Hohlweg-Majert B, Metzger MC, Kummer T, Schulze D (2011) Morphometric analysis - Cone beam computed tomography to predict bone quality and quantity. J Craniomaxillofac Surg 39:330–334

    Article  CAS  PubMed  Google Scholar 

  52. Van Steenberghe D, Quirynen M, Naert I, Maffei G, Jacobs R (2001) Marginal bone loss around implants retaining hinging mandibular overdentures, at 4, 8 and 12 years follow-up. J Clin Periodontol 28:628–633

    Article  PubMed  Google Scholar 

  53. ELsyad MA, Hammouda NI Khirallah AS (2016) Circumferential bone loss around splinted and nonsplinted immediately loaded implants retaining mandibular overdentures: a randomized controlled clionical trial using cone beam computed tomography. J Prosthet Dent. 116:741–8.

  54. Barone A, Covani U, Cornelini R, Gherlone E (2003) Radiographic bone density around immediately loaded oral implants. Clin Oral Implants Res 14:610–615

    Article  PubMed  Google Scholar 

  55. IBM Corp: IBM SPSS Statistics for Windows, Version 21.0, Armonk, NY, IBM Corp, 2012.

  56. de Faria VK, Evangelista KM, Rodrigues CD, Estrela C, de Sousa TO, Silva MA (2012) Detection of periodontal bone loss using cone beam CT and intraoral radiography. Dentomaxillofac Radiol 41(1):64–69

    Article  Google Scholar 

  57. Sheikhi M, Dakhil-Alian M, Bahreinian Z (2015) Accuracy and reliability of linear measurements using tangential projection and cone beam computed tomography. Dental Res J (Isfahan) 2015(12):271–277

    Google Scholar 

  58. Al-Ekrish AA, Ekram MI, Al Faleh W, Alkhader M, Al-Sadhan R (2013) The validity of different display monitors in the assessment of dental implant site dimensions in cone beam computed tomography images. Acta Odontol Scand 71:1085–1091

    Article  PubMed  Google Scholar 

  59. Fokas G, Vaughn VM, Scarfe WC, Bornstein MM (2018) Accuracy of linear measurements on CBCT images related to presurgical implant treatment planning: a systematic review. Clin Oral Implants Res 29(Suppl 16):393–415. https://doi.org/10.1111/clr.1314

    Article  PubMed  Google Scholar 

Download references

Funding

This research was self-funded by the authors.

Author information

Authors and Affiliations

Authors

Contributions

Latifa Abdallah Mohamed: conceptualization, methodology, validation, formal analysis, investigation, resources, data curation, writing—original draft, writing—review and editing, project administration, funding acquisition.

Mohamed Moataz Khamis: conceptualization, methodology, validation, formal analysis, investigation, data curation, writing—review and editing, visualization, supervision.

Ahlam Moustafa El-Sharkawy: conceptualization, methodology, validation, formal analysis, investigation, data curation, supervision.

Rania Abdelaziz Fahmy: methodology, validation, formal analysis, investigation, data curation, supervision.

Corresponding author

Correspondence to Mohamed Moataz Khamis.

Ethics declarations

Informed consent

Participant’s consent form written in Arabic which is the language of participants.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, L.A., Khamis, M.M., El-Sharkawy, A.M. et al. Evaluation of immediately loaded mandibular four vertical versus tilted posterior implants supporting fixed detachable restorations without versus with posterior cantilevers. Oral Maxillofac Surg 26, 373–381 (2022). https://doi.org/10.1007/s10006-021-00993-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10006-021-00993-5

Keywords

Navigation