Skip to main content

Advertisement

Log in

Influence of periodontal inflammation on tryptophan-kynurenine metabolism: a cross-sectional study

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

Kynurenine pathway (KP) is the primary way of degrading tryptophan (TRP) and generates several bioactive metabolites (such as kynurenine (KYN), kynurenic acid (KYNA), 3-hydroxykynurenine (3OHKYN)) to regulate biological processes that include host-microbiome signaling and immune cell response. This study is aimed to determine the relationship between periodontal inflammation and tryptophan-kynurenine metabolism and identify their association with periodontal clinical parameters.

Materials and methods

Saliva and serum samples were collected from 20 stage III, grade B generalized periodontitis patients, and 20 periodontally healthy control individuals. Samples were analyzed for IL-6, KYN, TRP, KYN/TRP ratio, KYNA, 3OHKYN, picolinic acid (PA), and quinolinic acid (QA) by liquid chromatography–mass spectrometry. Clinical periodontal parameters (plaque index (PI), probing pocket depth (PPD), gingival recession (GR), clinical attachment loss (CAL), and bleeding on probing (BOP)) were recorded.

Results

Clinical parameters were significantly higher in the periodontitis group (p < 0.001). Salivary IL-6, TRP, KYN, KYNA, PA, and QA levels were significantly higher and KYN/TRP ratio was significantly lower in periodontitis group than control group (p < 0.05). Serum KYN, KYN/TRP ratio and PA levels were significantly higher in periodontitis group than control group (p < 0.05). PPD, BOP, PI, and CAL had significantly positive correlations with salivary IL-6, TRP, PA, QA, and serum KYN and significantly negative correlations with salivary KYN/TRP ratio.

Conclusions

Our results suggest that periodontal inflammation plays a role in local and systemic tryptophan-kynurenine metabolism.

Clinical relevance

Due to their effects on the immune and inflammatory systems, kynurenines may be potential agents for diagnosis and treatment of periodontal diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Human IL-6 ELISA Kit, Uscn, Cloud-Clone Corp, USA.

  2. Synergy HT Microplate Reader, Bio-Tek Instruments, Winooski, WT, USA.

  3. TSQ Quantum Access MAX Triple Stage Quadrupole Mass, Thermo Scientific, USA.

  4. SPSS for Windows v.26, IBM SPSS Inc., New York, NY, USA.

  5. 3.1.9.2 G*Power; https://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-und-arbeitspsychologie/gpower.html

References

  1. Polyzos KA, Ketelhuth DFJ (2015) The role of the kynurenine pathway of tryptophan metabolism in cardiovascular disease. Hamostaseologie 35(02):128–136. https://doi.org/10.5482/HAMO-14-10-0052

    Article  PubMed  Google Scholar 

  2. Wang Q, Liu D, Song P, Zou MH (2015) Tryptophan-kynurenine pathway is dysregulated in inflammation and immune activation. Front Biosci 20:4363. https://doi.org/10.2741/4363

    Article  Google Scholar 

  3. Fukunaga M, Yamamoto Y, Kawasoe M, Arioka Y, Murakami Y, Hoshi M, Saito K (2012) Studies on tissue and cellular distribution of indoleamine 2,3-dioxygenase 2: the absence of IDO1 upregulates IDO2 expression in the epididymis. J Histochem Cytochem 60(11):854–860. https://doi.org/10.1369/0022155412458926

    Article  PubMed  PubMed Central  Google Scholar 

  4. Savitz J (2020) The kynurenine pathway: a finger in every pie. Mol Psychiatry 25(1):131–147. https://doi.org/10.1038/s41380-019-0414-4

    Article  PubMed  Google Scholar 

  5. Grohmann U, Puccetti P (2015) The coevolution of IDO1 and AhR in the emergence of regulatory T-cells in mammals. Front Immunol 6:58. https://doi.org/10.3389/fimmu.2015.00058

    Article  PubMed  PubMed Central  Google Scholar 

  6. Schwarcz R (2016) Kynurenines and glutamate: multiple links and therapeutic implications. Adv Pharmacol 76:13–37. https://doi.org/10.1016/bs.apha.2016.01.005

    Article  PubMed  PubMed Central  Google Scholar 

  7. Song P, Ramprasath T, Wang H, Zou MH (2017) Abnormal kynurenine pathway of tryptophan catabolism in cardiovascular diseases. Cell Mol Life Sci 74(16):2899–2916. https://doi.org/10.1007/s00018-017-2504-2

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lovelace MD, Varney B, Sundaram G, Franco NF, Ng ML, Pai S, Lim CK, Guillemin GJ, Brew BJ (2016) Current evidence for a role of the kynurenine pathway of tryptophan metabolism in multiple sclerosis. Front Immunol 7:246. https://doi.org/10.3389/fimmu.2016.00246

    Article  PubMed  PubMed Central  Google Scholar 

  9. Breda C, Sathyasaikumar KV, Idrissi SS, Notarangelo FM, Estranero JG, Moore GGL, Green EW, Kyriacou CP, Schwarcz R, Giorgini F (2016) Tryptophan-2, 3-dioxygenase (TDO) inhibition ameliorates neurodegeneration by modulation of kynurenine pathway metabolites. Proc Natl Acad Sci USA 113(19):5435–5440. https://doi.org/10.1073/pnas.1604453113

    Article  PubMed  PubMed Central  Google Scholar 

  10. Adibfar A, Saleem M, Lanctot KL, Herrmann N (2016) Potential biomarkers for depression associated with coronary artery disease: a critical review. Curr Mol Med 16(2):137–164. https://doi.org/10.2174/1566524016666160126144143

    Article  PubMed  Google Scholar 

  11. Agudelo LZ, Femenía T, Orhan F, Porsmyr-Palmertz M, Goiny M, Martinez-Redondo V, Correia JC, Izadi M, Bhat M, Schuppe-Koistinen I, Pettersson AT, Ferreira DMS, Krook A, Barres R, Zierath JR, Erhardt S, Lindskog M, Ruas JL (2014) Skeletal muscle PGC-1α1 modulates kynurenine metabolism and mediates resilience to stressinduced depression. Cell 159(1):33–45. https://doi.org/10.1016/j.cell.2014.07.051

    Article  PubMed  Google Scholar 

  12. Erhardt S, Blennow K, Nordin C, Skogh E, Lindström LH, Engberg G (2001) Kynurenic acid levels are elevated in the cerebrospinal fluid of patients with schizophrenia. Neurosci Lett 313(1–2):96–98. https://doi.org/10.1016/s0304-3940(01)02242-x

    Article  PubMed  Google Scholar 

  13. Wonodi I, Schwarcz R (2010) Cortical kynurenine pathway metabolism: a novel target for cognitive enhancement in schizophrenia. Schizophr Bull 36(2):211–218. https://doi.org/10.1093/schbul/sbq002

    Article  PubMed  PubMed Central  Google Scholar 

  14. Oxenkrug GF (2015) Increased plasma levels of xanthurenic and kynurenic acids in type 2 diabetes. Mol Neurobiol 52(2):805–810. https://doi.org/10.1007/s12035-015-9232-0

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wainwright DA, Dey M, Chang A, Lesniak MS (2013) Targeting Tregs in malignant brain cancer: overcoming IDO. Front Immunol 4:116. https://doi.org/10.3389/fimmu.2013.00116

    Article  PubMed  PubMed Central  Google Scholar 

  16. Munn DH, Mellor AL (2016) IDO in the tumor microenvironment: inflammation, counter-regulation, and tolerance. Trends Immunol 37(3):193–207. https://doi.org/10.1016/j.it.2016.01.002

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wolf AM, Wolf D, Rumpold H, Moschen AR, Kaser A, Obrist P, Fuchs D, Brandacher G, Winkler C, Geboes K, Rutgeerts P, Tilg H (2004) Overexpression of indoleamine 2, 3-dioxygenase in human inflammatory bowel disease. Clin Immunol 113(1):47–55. https://doi.org/10.1016/j.clim.2004.05.004

    Article  PubMed  Google Scholar 

  18. Wang Y, Liu H, McKenzie G, Witting PK, Stasch JP, Hahn M, Changsirivathanathamrong D, Wu BJ, Ball HJ, Thomas SR, Kapoor V, Celermajer DS, Mellor AL, Keaney JF Jr, Hunt NH, Stocker R (2010) Kynurenine is an endothelium-derived relaxing factor produced during inflammation. Nat Med 16(3):279–285. https://doi.org/10.1038/nm.2092

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wang Q, Zhang M, Ding Y, Wang Q, Zhang W, Song P, Zou MH (2014) Activation of NAD (P) H oxidase by tryptophan-derived 3-hydroxykynurenine accelerates endothelial apoptosis and dysfunction in vivo. Circ Res 114(3):480–492. https://doi.org/10.1161/CIRCRESAHA.114.302113

    Article  PubMed  Google Scholar 

  20. Mange H, Stelzer I, Reininghaus EZ, Weghuber D, Postolache TT, Fuchs D (2014) Disturbed tryptophan metabolism in cardiovascular disease. Curr Med Chem 21(17):1931–1937. https://doi.org/10.2174/0929867321666140304105526

    Article  Google Scholar 

  21. Nisapakultorn K, Makrudthong J, Sa-Ard-Iam N, Rerkyen P, Mahanonda R, Takikawa O (2009) Indoleamine 2, 3-dioxygenase expression and regulation in chronic periodontitis. J Periodontol 80(1):114–121. https://doi.org/10.1902/jop.2009.080315

    Article  PubMed  Google Scholar 

  22. Moon JS, Cheong NR, Yang SY, Kim IS, Chung HJ, Jeong YW, Park JC, Kim MS, Kim SH, Ko HM (2013) Lipopolysaccharide-induced indoleamine 2, 3-dioxygenase expression in the periodontal ligament. J Periodontal Res 48(6):733–739. https://doi.org/10.1111/jre.12063

    Article  PubMed  Google Scholar 

  23. Mondanelli G, Coletti A, Greco FA, Pallotta MT, Orabona C, Iacono A, Belladonna ML, Albini E, Panfili E, Fallarino F, Gargaro M, Manni G, Matino D, Carvalho A, Cunha C, Maciel P, Di Filippo M, Gaetani L, Bianchi R, Vacca C, Iamandii IM, Proietti E, Boscia F, Annunziato L, Peppelenbosch M, Puccetti P, Calabresi P, Macchiarulo A, Santambrogio L, Volpi C, Grohmann U (2020) Positive allosteric modulation of indoleamine 2,3-dioxygenase 1 restrains neuroinflammation. Proc Natl Acad Sci USA 117(7):3848–3857. https://doi.org/10.1073/pnas.1918215117

    Article  PubMed  PubMed Central  Google Scholar 

  24. Huang J, Cai X, Ou Y, Fan L, Zhou Y, Wang Y (2019) Protective roles of FICZ and aryl hydrocarbon receptor axis on alveolar bone loss and inflammation in experimental periodontitis. J Clin Periodontol 46(9):882–893. https://doi.org/10.1111/jcpe.13166

    Article  PubMed  Google Scholar 

  25. Monasterio G, Budini V, Fernández B, Castillo F, Rojas C, Alvarez C, Cafferata EA, Vicencio E, Cortés BI, Cortez C, Vernal R (2019) IL-22-expressing CD4(+) AhR(+) T lymphocytes are associated with RANKL-mediated alveolar bone resorption during experimental periodontitis. J Periodontal Res 54(5):513–524. https://doi.org/10.1111/jre.12654

    Article  PubMed  Google Scholar 

  26. Cihan M, Doğan Ö, Ceran Serdar C, Altunçekiç Yıldırım A, Kurt C, Serdar MA (2022) Kynurenine pathway in coronavirus disease (COVID-19): potential role in prognosis. J Clin Lab Anal 36(3):e24257. https://doi.org/10.1002/jcla.24257

    Article  PubMed  PubMed Central  Google Scholar 

  27. Guillemin GJ (2012) Quinolinic acid, the inescapable neurotoxin. FEBS J 279(8):1356–1365. https://doi.org/10.1111/j.1742-4658.2012.08485.x

    Article  PubMed  Google Scholar 

  28. Jones SP, Guillemin GJ, Brew BJ (2013) The kynurenine pathway in stem cell biology. Int J Tryptophan Res 6:57–66. https://doi.org/10.4137/IJTR.S12626

    Article  PubMed  PubMed Central  Google Scholar 

  29. Duque G, Vidal C, Li W, Al Saedi A, Khalil M, Lim CK, Myers DE, Guillemin GJ (2020) Picolinic acid, a catabolite of tryptophan, has an anabolic effect on bone in vivo. J Bone Miner Res 35(11):2275–2288. https://doi.org/10.1002/jbmr.4125

    Article  PubMed  Google Scholar 

  30. Pirih FQ, Monajemzadeh S, Singh N, Sinacola RS, Shin JM, Chen T, Fenno JC, Kamarajan P, Rickard AH, Travan S, Paster BJ, Kapila Y (2021) Association between metabolic syndrome and periodontitis: the role of lipids, inflammatory cytokines, altered host response, and the microbiome. Periodontol 2000 87(1):50–75. https://doi.org/10.1111/prd.12379 (PMID: 34463996)

    Article  PubMed  PubMed Central  Google Scholar 

  31. Joseph S, Curtis MA (2021) Microbial transitions from health to disease. Periodontol 2000 86(1):201–209. https://doi.org/10.1111/prd.12377

    Article  PubMed  Google Scholar 

  32. Teles F, Wang Y, Hajishengallis G, Hasturk H, Marchesan JT (2021) Impact of systemic factors in shaping the periodontal microbiome. Periodontol 2000 85(1):126–160. https://doi.org/10.1111/prd.12356

    Article  PubMed  Google Scholar 

  33. Buduneli N, Kardesler L, Isik H, Willis CS 3rd, Hawkins SI, Kinane DF, Scott DA (2006) Effects of smoking and gingival inflammation on salivary antioxidant capacity. J Clin Periodontol 33(3):159–164. https://doi.org/10.1111/j.1600-051X.2006.00892.x

    Article  PubMed  Google Scholar 

  34. Tonetti MS, Greenwell H, Kornman KS (2018) Staging and grading of periodontitis: framework and proposal of a new classification and case definition. J Clin Periodontol 45(20):S149–S161. https://doi.org/10.1111/jcpe.12945

    Article  PubMed  Google Scholar 

  35. Önder C, Kurgan Ş, Altıngöz SM, Bağış N, Uyanık M, Serdar MA, Kantarcı A, Günhan M (2017) Impact of non-surgical periodontal therapy on saliva and serum levels of markers of oxidative stress. Clin Oral Investig 21(6):1961–1969. https://doi.org/10.1007/s00784-016-1984-z

    Article  PubMed  Google Scholar 

  36. Tayman MA, Kurgan Ş, Önder C, Güney Z, Serdar MA, Kantarcı A, Günhan M (2019) Affiliations expandA disintegrin-like and metalloproteinase with thrombospondin-1 (ADAMTS-1) levels in gingival crevicular fluid correlate with vascular endothelial growth factor-A, hypoxia-inducible factor-1α, and clinical parameters in patients with advanced periodontitis. J Periodontol 90(10):1182–1189. https://doi.org/10.1002/JPER.18-0195

    Article  PubMed  Google Scholar 

  37. Tömösi F, Kecskeméti G, Cseh EK, Szabó E, Rajda C, Kormány R, Szabó Z, Vécsei L, Janáky T (2020) A validated UHPLC-MS method for tryptophan metabolites: application in the diagnosis of multiple sclerosis. J Pharm Biomed Anal 185:113246. https://doi.org/10.1016/j.jpba.2020.113246

    Article  PubMed  Google Scholar 

  38. Taylor MW, Feng G (1991) Relationship between interferon-γ, indoleamine 2, 3-dioxygenase, and tryptophan catabolism. FASEB J 5(11):2516–2522

    Article  Google Scholar 

  39. Badawy AA, Dougherty DM (2016) Assessment of the human kynurenine pathway: comparisons and clinical implications of ethnic and gender differences in plasma tryptophan, kynurenine metabolites, and enzyme expressions at baseline and after acute tryptophan loading and depletion. Int J Tryptophan Res 9:31–49. https://doi.org/10.4137/IJTR.S38189

  40. Schröcksnadel K, Wirleitner B, Winkler C, Fuchs D (2006) Monitoring tryptophan metabolism in chronic immune activation. Clin Chim Acta 364(1–2):82–90. https://doi.org/10.1016/j.cca.2005.06.013

    Article  PubMed  Google Scholar 

  41. Costa PP, Trevisan GL, O Macedo GO, Palioto DB, Souza SL, Grisi MFM, Novaes AB Jr, Taba M Jr (2010) Salivary interleukin-6, matrix metalloproteinase-8, and osteoprotegerin in patients with periodontitis and diabetes. J Periodontol 81(3):384–391. https://doi.org/10.1902/jop.2009.090510

    Article  PubMed  Google Scholar 

  42. Ebersole JL, Schuster JL, Stevens J, Dawson D 3rd, Kryscio RJ, Lin Y, Thomas MV, Miller CS (2013) Patterns of salivary analytes provide diagnostic capacity for distinguishing chronic adult periodontitis from health. J Clin Immunol 33(1):271–279. https://doi.org/10.1007/s10875-012-9771-3

    Article  PubMed  Google Scholar 

  43. Prakasam S, Srinivasan M (2014) Evaluation of salivary biomarker profiles following non-surgical management of chronic periodontitis. Oral Dis 20(2):171–177. https://doi.org/10.1111/odi.12085

    Article  PubMed  Google Scholar 

  44. Litzenburger UM, Opitz CA, Sahm F, Rauschenbach KJ, Trump S, Winter M, Ott M, Ochs K, Lutz C, Liu X, Anastasov N, Lehmann I, Höfer T, von Deimling A, Wick W, Platten M (2014) Constitutive IDO expression in human cancer is sustained by an autocrine signaling loop involving IL-6, STAT3 and the AHR. Oncotarget 5(4):1038–1051. https://doi.org/10.18632/oncotarget.1637

    Article  PubMed  PubMed Central  Google Scholar 

  45. Anderson G, Kubera M, Duda W, Lasoń W, Berk M, Maes M (2013) Increased IL-6 trans-signaling in depression: focus on the tryptophan catabolite pathway, melatonin and neuroprogression. Pharmacol Rep 65(6):1647–1654. https://doi.org/10.1016/s1734-1140(13)71526-3

    Article  PubMed  Google Scholar 

  46. Li F, Wei L, Li S, Liu J (2017) Indoleamine-2, 3-dioxygenase and Interleukin-6 associated with tumor response to neoadjuvant chemotherapy in breast cancer. Oncotarget 8(64):107844–107858. https://doi.org/10.18632/oncotarget.22253

    Article  PubMed  PubMed Central  Google Scholar 

  47. Nikolaus S, Schulte B, Al-Massad N, Thieme F, Schulte DM, Bethge J, Rehman A, Tran F, Aden K, Häsler R, Moll N, Schütze G, Schwarz MJ, Waetzig GH, Rosenstiel P, Krawczak M, Szymczak S, Schreiber S (2017) Increased tryptophan metabolism is associated with activity of inflammatory bowel diseases. Gastroenterology 153(6):1504-1516.e2. https://doi.org/10.1053/j.gastro.2017.08.028

    Article  PubMed  Google Scholar 

  48. Tezcan D, Onmaz DE, Sivrikaya A, Körez MK, Hakbilen S, Gülcemal S, Yılmaz S (2022) Kynurenine pathway of tryptophan metabolism in patients with familial Mediterranean fever. Mod Rheumatol roac016. https://doi.org/10.1093/mr/roac016.

  49. Kapoor V, Kapoor R, Chalmers J (1994) Kynurenic acid, an endogenous glutamate antagonist, in SHR and WKY rats: possible role in central blood pressure regulation. Clin Exp Pharmacol Physiol 21(11):891–896. https://doi.org/10.1111/j.1440-1681.1994.tb02460.x

    Article  PubMed  Google Scholar 

  50. Buczko P, Stokowska W, Górska M, Kucharewicz I, Pawlak D, Buczko WŁO (2006) Tryptophan metabolites via kynurenine pathway in saliva of diabetic patients. Dent Med Probl 43(1):21–25

    Google Scholar 

  51. Rishabh K, Nagesh KS, Iyengar A, Divyalakshmi (2012) Diabetes and oral changes: the tryptophan metabolism link? J Clin Diagn Res 6(3):517–520

    Google Scholar 

  52. Balci N, Kurgan Ş, Çekici A, Çakır T, Serdar MA (2021) Free amino acid composition of saliva in patients with healthy periodontium and periodontitis. Clin Oral Investig 25(6):4175–4183. https://doi.org/10.1007/s00784-021-03977-7

    Article  PubMed  Google Scholar 

  53. Turkish edition of ‘Guyton and hall textbook of medical physiology, 12th Ed’ by John Edward Hall, Ch. 70 protein metabolism, pg. 875–80.

  54. Fuchs D, Möller AA, Reibnegger G, Stöckle E, Werner ER, Wachter H (1990) Decreased serum tryptophan in patients with HIV-1 infection correlates with increased serum neopterin and with neurologic/psychiatric symptoms. J Acquir Immune Defic Syndr (1988) 3(9):873–876

    Google Scholar 

  55. Widner B, Werner ER, Schennach H, Wachter H, Fuchs D (1997) Simultaneous measurement of serum tryptophan and kynurenine by HPLC. Clin Chem 43(12):2424–2426

    Article  Google Scholar 

  56. Fuchs D, Möller AA, Reibnegger G, Werner ER, Werner-Felmayer G, Dierich MP, Wachter H (1991) Increased endogenous interferon-gamma and neopterin correlate with increased degradation of tryptophan in human immunodeficiency virus type 1 infection. Immunol Lett 28(3):207–211. https://doi.org/10.1016/0165-2478(91)90005-u

    Article  PubMed  Google Scholar 

  57. Schroecksnadel K, Winkler C, Fuith LC, Fuchs D (2005) Tryptophan degradation in patients with gynecological cancer correlates with immune activation. Cancer Lett 223(2):323–329. https://doi.org/10.1016/j.canlet.2004.10.033

    Article  PubMed  Google Scholar 

  58. Vecsei L, Szalardy L, Fulop F, Toldi J (2013) Kynurenines in the CNS: recent advances and new questions. Nat Rev Drug Discov 12(1):64–82. https://doi.org/10.1038/nrd3793

    Article  PubMed  Google Scholar 

  59. Badawy AA (2018) Hypothesis kynurenic and quinolinic acids: the main players of the kynurenine pathway and opponents in inflammatory disease. Med Hypotheses 118:129–138. https://doi.org/10.1016/j.mehy.2018.06.021

    Article  PubMed  Google Scholar 

  60. Lugo-Huitrón R, Blanco-Ayala T, Ugalde-Muñiz P, Carrillo-Mora P, Pedraza-Chaverrí J, Silva-Adaya D, Maldonado PD, Torres I, Pinzón E, Ortiz-Islas E, López T, García E, Pineda B, Torres-Ramos M, Santamaría A, Pérez-De La Cruz V (2011) On the antioxidant properties of kynurenic acid: free radical scavenging activity and inhibition of oxidative stress. Neurotoxicol Teratol 33(5):538–547. https://doi.org/10.1016/j.ntt.2011.07.002

    Article  PubMed  Google Scholar 

  61. Rodríguez-Martínez E, Camacho A, Maldonado PD, Pedraza-Chaverrí J, Santamaría D, Galván-Arzate S, Santamaría A (2000) Effect of quinolinic acid on endogenous antioxidants in rat corpus striatum. Brain Res 858(2):436–439. https://doi.org/10.1016/s0006-8993(99)02474-9

    Article  PubMed  Google Scholar 

  62. Sahm F, Oezen I, Opitz CA, Radlwimmer B, von Deimling A, Ahrendt T, Adams S, Bode HB, Guillemin GJ, Wick W, Platten M (2013) The endogenous tryptophan metabolite and NAD+ precursor quinolinic acid confers resistance of gliomas to oxidative stress. Cancer Res 73(11):3225–3234. https://doi.org/10.1158/0008-5472.CAN-12-3831

    Article  PubMed  Google Scholar 

  63. Sas K, Szabó E, Vécsei L (2018) Mitochondria, oxidative stress and the kynurenine system, with a focus on ageing and neuroprotection. Molecules 23(1):191. https://doi.org/10.3390/molecules23010191

    Article  PubMed Central  Google Scholar 

  64. Moffett JR, Namboodiri MA (2003) Tryptophan and the immune response. Immunol Cell Biol 81(4):247–265. https://doi.org/10.1046/j.1440-1711.2003.t01-1-01177.x

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The study was supported by the Ankara University Department of Periodontology and by the İstanbul Medipol University Department of Periodontology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Şivge Kurgan.

Ethics declarations

Ethical approval

The study was approved by the human subject’s ethics board of Istanbul Medipol University (No: 63, on 06.01.2022) and was conducted in consistency with the Helsinki Declaration.

Informed consent

All participants have given written consent before the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 202 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurgan, Ş., Önder, C., Balcı, N. et al. Influence of periodontal inflammation on tryptophan-kynurenine metabolism: a cross-sectional study. Clin Oral Invest 26, 5721–5732 (2022). https://doi.org/10.1007/s00784-022-04528-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-022-04528-4

Keywords

Navigation