Skip to main content

Advertisement

Log in

Influence of cyclic loading in NiTi austenitic and R-phase endodontic files from a finite element perspective

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

This study aims to evaluate the effects of cyclic loading on the bending moments and the developed stress state of austenitic and R-phase endodontic files through finite element analysis.

Materials and methods

The mechanical properties of two groups of NiTi wires, austenite and R-phase, were measured in samples at two different conditions: uncycled and cycled. The cycled condition was achieved by subjecting samples of the two groups to 80% of the corresponding fatigue life under rotating bending efforts. The measured mechanical properties were then used in the finite element analysis, where the boundary and loading conditions were set to replicate a standard bending test.

Results

The results showed that mechanical cycling leads to decreasing stress levels and bending moments in the simulated files, especially in the austenitic ones. In comparison with austenite, R-phase presented a more stable mechanical behavior during cycling.

Conclusions

The results show that the moment and stress calculated for an instrument under bending can be considerably decreased after some cyclic work.

Clinical relevance

The fatigue related to the clinical use of an endodontic file decreases the moment (as well as the forces) imposed by the instrument during the shaping of a curved root canal. This decrease is directly related to the type of atomic array present in the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Otsuka K, Wayman CM (1998) Shape memory materials. Cambridge University Press, Cambridge

    Google Scholar 

  2. Otsuka K, Ren X (1999) Martensitic transformations in nonferrous shape memory alloys. Mater Sci Eng A 273–275:89–105. https://doi.org/10.1016/S0921-5093(99)00291-9

    Article  Google Scholar 

  3. Otsuka K, Ren X (2005) Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci 50:511–678. https://doi.org/10.1016/j.pmatsci.2004.10.001

    Article  Google Scholar 

  4. Zinelis S, Darabara M, Takase T et al (2007) The effect of thermal treatment on the resistance of nickel-titanium rotary files in cyclic fatigue. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol 103:843–847. https://doi.org/10.1016/j.tripleo.2006.12.026

    Article  Google Scholar 

  5. Gambarini G, Grande NM, Plotino G (2008) Fatigue resistance of engine-driven rotary nickel-titanium instruments produced by new manufacturing methods. J Endod 34:1003–1005. https://doi.org/10.1016/j.joen.2008.05.007

    Article  PubMed  Google Scholar 

  6. Braga LCM, Silva ACF, Buono VTL, de Bahia MGdeA (2014) Impact of heat treatments on the fatigue resistance of different rotary nickel-titanium instruments. J Endod 40:7–10. https://doi.org/10.1016/j.joen.2014.03.007

    Article  Google Scholar 

  7. Pereira ESJ, Viana ACD, Buono VTL et al (2015) Behavior of nickel-titanium instruments manufactured with different thermal treatments. J Endod 41:67–71. https://doi.org/10.1016/j.joen.2014.06.005

    Article  PubMed  Google Scholar 

  8. Ye J, Gao Y (2012) Metallurgical characterization of M-wire nickel-titanium shape memory alloy used for endodontic rotary instruments during low-cycle fatigue. J Endod 38:105–107. https://doi.org/10.1016/j.joen.2011.09.028

    Article  PubMed  Google Scholar 

  9. Pereira ESJ, Gomes R, Leroy A et al (2013) Mechanical behavior of M-Wire and conventional NiTi wire used to manufacture rotary endodontic instruments. Dent Mater 29:e318–e324. https://doi.org/10.1016/j.dental.2013.10.004

    Article  PubMed  Google Scholar 

  10. De Arruda SL, De Azevedo Bahia MG, De Las Casas EB, Buono VTL (2013) Comparison of the mechanical behavior between controlled memory and superelastic nickel-titanium files via finite element analysis. J Endod 39:1444–1447. https://doi.org/10.1016/j.joen.2013.07.030

    Article  Google Scholar 

  11. De Arruda SL, López JB, De Las Casas EB et al (2014) Mechanical behavior of three nickel-titanium rotary files: a comparison of numerical simulation with bending and torsion tests. Mater Sci Eng C 37:258–263. https://doi.org/10.1016/j.msec.2014.01.025

    Article  Google Scholar 

  12. Santos LDA, Resende PD, Bahia MGDA, Buono VTL (2016) Effects of R-phase on mechanical responses of a nickel-titanium endodontic instrument: structural characterization and finite element analysis. Sci World J 2016.https://doi.org/10.1155/2016/7617493

  13. Chevalier V, Pino L, Arbab Chirani R et al (2018) Experimental validation of numerical simulations of a new-generation NiTi endodontic file under bending. J Mater Eng Perform 27:5856–5864. https://doi.org/10.1007/s11665-018-3674-2

    Article  Google Scholar 

  14. Prados-Privado M, Rojo R, Ivorra C, Prados-Frutos JC (2019) Finite element analysis comparing WaveOne, WaveOne Gold, Reciproc and Reciproc Blue responses with bending and torsion tests. J Mech Behav Biomed Mater 90:165–172. https://doi.org/10.1016/j.jmbbm.2018.10.016

    Article  PubMed  Google Scholar 

  15. Martins SCS, Silva JD, Viana ACD et al (2020) Effects of heat treatment and design on mechanical responses of NiTi endodontic instruments: a finite element analysis. Mater Res 23:26–28. https://doi.org/10.1590/1980-5373-MR-2020-0087

    Article  Google Scholar 

  16. Martins SCSM, Garcia PR, Viana ACDV et al (2020) Off-centered geometry and influence on niti endodontic file performance evaluated by finite element analysis. 26–31. https://doi.org/10.1007/s11665-020-04797-8

  17. Scattina A, Alovisi M, Paolino DS et al (2015) Prediction of cyclic fatigue life of nickel-titanium rotary files by virtual modeling and finite elements analysis. J Endod 41:1867–1870. https://doi.org/10.1016/j.joen.2015.07.010

    Article  PubMed  Google Scholar 

  18. Lee MH, Versluis A, Kim BM et al (2011) Correlation between experimental cyclic fatigue resistance and numerical stress analysis for nickel-titanium rotary files. J Endod 37:1152–1157. https://doi.org/10.1016/j.joen.2011.03.025

    Article  PubMed  Google Scholar 

  19. Montalvão D, Shengwen Q, Freitas M (2014) A study on the influence of Ni-Ti M-Wire in the flexural fatigue life of endodontic rotary files by using finite element analysis. Mater Sci Eng C 40:172–179. https://doi.org/10.1016/j.msec.2014.03.061

    Article  Google Scholar 

  20. Fife D, Gambarini G, Britto LR (2004) Cyclic fatigue testing of ProTaper NiTi rotary instruments after clinical use. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 97:251–256. https://doi.org/10.1016/j.tripleo.2003.08.010

    Article  PubMed  Google Scholar 

  21. Bahia MGA, Buono VTL (2005) Decrease in the fatigue resistance of nickel-titanium rotary instruments after clinical use in curved root canals. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol 100:249–255. https://doi.org/10.1016/j.tripleo.2004.10.013

    Article  Google Scholar 

  22. Vieira EP, França EC, Martins RC et al (2008) Influence of multiple clinical use on fatigue resistance of ProTaper rotary nickel-titanium instruments. Int Endod J 41:163–172. https://doi.org/10.1111/j.1365-2591.2007.01336.x

    Article  PubMed  Google Scholar 

  23. Arias A, Perez-Higueras JJ, de la Macorra JC (2014) Influence of clinical usage of GT and GTX files on cyclic fatigue resistance. Int Endod J 47:257–263. https://doi.org/10.1111/iej.12141

    Article  PubMed  Google Scholar 

  24. Yared GM, Dagher FE, Machtou P (2000) Cyclic fatigue of ProFile rotary instruments after clinical use. Int Endod J 33:204–207. https://doi.org/10.1046/j.1365-2591.2001.00259.x

    Article  PubMed  Google Scholar 

  25. Bahia MGdeA, Dias RF, Buono VT (2006) The influence of high amplitude cyclic straining on the behaviour of superelastic NiTi. Int J Fatigue 28:1087–1091. https://doi.org/10.1016/j.ijfatigue.2005.11.008

    Article  Google Scholar 

  26. Vieira EP, Nakagawa RKL, Buono VTL, Bahia MGA (2009) Torsional behaviour of rotary NiTi protaper universal instruments after multiple clinical use. Int Endod J 42:947–953. https://doi.org/10.1111/j.1365-2591.2009.01602.x

    Article  PubMed  Google Scholar 

  27. Magalhães RRS, Braga LCM, Pereira ÉSJ et al (2016) The impact of clinical use on the torsional behavior of Reciproc and WaveOne instruments. J Appl Oral Sci 24:310–316. https://doi.org/10.1590/1678-775720150596

    Article  PubMed  PubMed Central  Google Scholar 

  28. Garcia PR, Resende PD, Lopes NIA et al (2019) Structural Characteristics and Torsional Resistance Evaluation of WaveOne and WaveOne Gold Instruments after Simulated Clinical Use. J Endod 45:1041–1046. https://doi.org/10.1016/j.joen.2019.04.009

    Article  PubMed  Google Scholar 

  29. Moreira EJL, Antunes HDS, Vieira VTL et al (2021) Effects of clinical use of NiTi reciprocating instruments on cyclic and torsional resistance, and on roughness. Braz Oral Res 35:e021. https://doi.org/10.1590/1807-3107bor-2021.vol35.0021

    Article  PubMed  Google Scholar 

  30. Pedullà E, Lo Savio F, Boninelli S et al (2016) Torsional and cyclic fatigue resistance of a new nickel-titanium instrument manufactured by electrical discharge machining. J Endod 42:156–159. https://doi.org/10.1016/j.joen.2015.10.004

    Article  PubMed  Google Scholar 

  31. Viana ACD, Pereira ESJ, Bahia MGA, Buono VTL (2013) The influence of simulated clinical use on the flexibility of rotary ProTaper Universal, K3 and EndoSequence nickel-titanium instruments. Int Endod J 46:855–862. https://doi.org/10.1111/iej.12071

    Article  PubMed  Google Scholar 

  32. Seago ST, Bergeron BE, Kirkpatrick TC et al (2015) Effect of repeated simulated clinical use and sterilization on the cutting efficiency and flexibility of hyflex CM nickel-titanium rotary Files. J Endod 41:725–728. https://doi.org/10.1016/j.joen.2015.01.011

    Article  PubMed  Google Scholar 

  33. Hieawy A, Haapasalo M, Zhou H et al (2015) Phase Transformation behavior and resistance to bending and cyclic fatigue of ProTaper Gold and protaper universal instruments. J Endod 41:1134–1138. https://doi.org/10.1016/j.joen.2015.02.030

    Article  PubMed  Google Scholar 

  34. Silva JD, Martins SC, Lopes NIdeA et al (2019) Effects of aging treatments on the fatigue resistance of superelastic NiTi wires. Mater Sci Eng A 756:54–60. https://doi.org/10.1016/j.msea.2019.04.037

    Article  Google Scholar 

  35. Silva JD, Resende PD, Garcia PR et al (2019) Fatigue resistance of dual-phase NiTi wires at different maximum strain amplitudes. Int J Fatigue 125:97–100. https://doi.org/10.1016/j.ijfatigue.2019.03.040

    Article  Google Scholar 

  36. Silva JD, Buono VTL (2019) Effect of the initial phase constitution in the low-cycle fatigue of NiTi wires. SN Appl Sci 1:1591. https://doi.org/10.1007/s42452-019-1655-1

    Article  Google Scholar 

  37. Auricchio F, Petrini L (2004) A three-dimensional model describing stress-temperature induced solid phase transformations: solution algorithm and boundary value problems. Int J Numer Methods Eng 61:807–836. https://doi.org/10.1002/nme.1086

    Article  Google Scholar 

  38. (2008) ISO 3630 ‐ 1. Dentistry – Root canal instruments – Part 1: general requirements and test methods

  39. Walia H, Brantley WA, Gerstein H (1988) An initial investigation of the bending and torsional properties of nitinol root canal files. J Endod 14:346–351. https://doi.org/10.1016/S0099-2399(88)80196-1

    Article  PubMed  Google Scholar 

  40. Polatidis E, Zotov N, Bischoff E, Mittemeijer EJ (2015) The effect of cyclic tensile loading on the stress-induced transformation mechanism in superelastic NiTi alloys: An in-situ X-ray diffraction study. Scr Mater 100:59–62. https://doi.org/10.1016/j.scriptamat.2014.12.013

    Article  Google Scholar 

  41. Heller L, Seiner H, Šittner P et al (2018) On the plastic deformation accompanying cyclic martensitic transformation in thermomechanically loaded NiTi. Int J Plast. https://doi.org/10.1016/j.ijplas.2018.07.007

    Article  Google Scholar 

  42. Miyazaki S, Imai T, Igo Y, Otsuka K (1986) Effect of cyclic deformation on the pseudoelasticity characteristics of Ti-Ni alloys. Metall Trans A Phys Metall Mater Sci 17(A):115–120. https://doi.org/10.1007/BF02644447

    Article  Google Scholar 

  43. Maletta C, Sgambitterra E, Furgiuele F et al (2014) Fatigue properties of a pseudoelastic NiTi alloy: Strain ratcheting and hysteresis under cyclic tensile loading. Int J Fatigue 66:78–85. https://doi.org/10.1016/j.ijfatigue.2014.03.011

    Article  Google Scholar 

  44. Sedmák P, Šittner P, Pilch J, Curfs C (2015) Instability of cyclic superelastic deformation of NiTi investigated by synchrotron X-ray diffraction. Acta Mater 94:257–270. https://doi.org/10.1016/j.actamat.2015.04.039

    Article  Google Scholar 

  45. Gu X, Zhang Y, You Y et al (2020) Evolution of transformation characteristics of shape memory alloys during cyclic loading: Transformation temperature hysteresis and residual martensite. Smart Mater Struct 29.https://doi.org/10.1088/1361-665X/ab9f10

  46. Duerig TW, Bhattacharya K (2015) The influence of the R-Phase on the superelastic behavior of NiTi. Shape Mem Superelasticity 1:153–161. https://doi.org/10.1007/s40830-015-0013-4

    Article  Google Scholar 

  47. Zhang X, Sehitoglu H (2004) Crystallography of the B2 → R → B19′ phase transformations in NiTi. Mater Sci Eng A 374:292–302. https://doi.org/10.1016/j.msea.2004.03.013

    Article  Google Scholar 

Download references

Funding

This work was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (Capes) – Finance Code 001, Conselho Nacional de Desenvolvimento Científico e Tecnológico – Brasil (CNPq), and Fundação de Amparo à Pesquisa do Estado de Minas Gerais – Brasil (Fapemig).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Suzanny Martins, Jessica Silva, Leandro Santos. Methodology: Suzanny Martins, Jessica Silva, Paula Garcia. Writing: Suzanny Martins, Jessica Silva. Writing review and editing: Leandro Santos. Supervision: Leandro Santos, Ana Viana, Vicente Buono.

Corresponding author

Correspondence to Leandro A. Santos.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, S.C.S., Silva, J.D., Garcia, P.R. et al. Influence of cyclic loading in NiTi austenitic and R-phase endodontic files from a finite element perspective. Clin Oral Invest 26, 3939–3947 (2022). https://doi.org/10.1007/s00784-021-04360-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-021-04360-2

Keywords

Navigation