Skip to main content

Advertisement

Log in

Development of a multi-criteria decision-making–based assessment model for dental material selection: Engine-driven nickel-titanium instruments case study

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

The aims of this study are (i) to propose specific selection criteria related to NiTi instruments for dental practitioners and (ii) to objectively assess the NiTi instruments.

Materials and methods

The steps of the methodology are as follows: Step 1: “Delphi method” was employed to reach a consensus on criteria defined according to the literature review and a group of panelists. Step 2: “Smart pairwise comparisons” were employed to rank the proposed criteria. Step 3: “Borda voting” was employed to determine the weights of the proposed criteria. Step 4: To determine assessment scores, “Simple Additive Weighting” was employed. Step 5: Reliability and validity checks were made by “simulation.”

Results

Specific criteria classified under dimensions were proposed and weighted for the NiTi instrument assessment. In this context, an assessment model was proposed and validated.

Conclusions

The proposed assessment model for NiTi instruments could aid to make the decision-making process as systematic, transparent, and reproducible as possible not only for dental practitioners but also for healthcare professionals. Also, this proposed model can represent a reference framework for further MCDM studies which can rank or classify materials in medical science.

Clinical relevance

The model proposed in this study can be used to aid decision-making in clinical practice by means assessing the NiTi instrumentation system alternatives for practitioners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Thompson SA (2000) An overview of nickel-titanium alloys used in dentistry. Int Endod J 33:297–310. https://doi.org/10.1046/j.1365-2591.2000.00339.x

    Article  PubMed  Google Scholar 

  2. Glossen CR, Haller RH, Dove SB, del Rio CE (1995) A comparison of root canal preparations using Ni-Ti hand, Ni-Ti engine-driven, and K-Flex endodontic instruments. J Endod 21:146–151. https://doi.org/10.1016/s0099-2399(06)80441-3

    Article  PubMed  Google Scholar 

  3. Viana AC, Craveiro C, de Melo M, de Azevedo G, Bahia M, Lopes Buono VT (2010) Relationship between flexibility and physical, chemical, and geometric characteristics of rotary nickel-titanium instruments. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 110:527–533. https://doi.org/10.1016/j.tripleo.2010.05.006

    Article  PubMed  Google Scholar 

  4. Short JA, Morgan LA, Baumgartner JC (1997) A comparison of canal centering ability of four instrumentation techniques. J Endod 23:503–507. https://doi.org/10.1016/S0099-2399(97)80310-X

    Article  PubMed  Google Scholar 

  5. Schafer E (2001) Shaping ability of Hero 642 rotary nickel- titanium instruments and stainless steel hand K-Flexofiles in simulated curved root canals. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 92:215–220. https://doi.org/10.1067/moe.2001.114622

    Article  PubMed  Google Scholar 

  6. Schafer E, Lohmann D (2002) Efficiency of rotary nickel-titanium FlexMaster instruments compared with stainless steel hand K-Flexofile - Part 1. Shaping ability in simulated curved canals. Int Endod J 35:505–513. https://doi.org/10.1046/j.1365-2591.2002.00513.x

    Article  PubMed  Google Scholar 

  7. Baumann MA, Roth A (1999) Effect of endodontic skill on root canal preparation with ProFile. 04. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 88:714–718. https://doi.org/10.1016/s1079-2104(99)70015-6

    Article  PubMed  Google Scholar 

  8. Sonntag D, Guntermann A, Kim SK, Stachniss V (2003) Root canal shaping with manual stainless steel files and rotary NiTi files performed by students. Int Endod J 36:246–255. https://doi.org/10.1046/j.1365-2591.2003.00661.x

    Article  PubMed  Google Scholar 

  9. Versiani MA. The root canal anatomy project (Access date: 26.06.2021). URL: http://rootcanalanatomy.blogspot.com/search/label/Preparation%20Systems

  10. Dahlström L, Lindwall O, Rystedt H, Reit C (2017) ‘Working in the dark’: Swedish general dental practitioners on the complexity of root canal treatment. Int Endod J 50:636–645. https://doi.org/10.1111/iej.12675

    Article  PubMed  Google Scholar 

  11. Hülsmann M (2002) Wurzelkanalaufbereitung mit Nickel-Titan-Instrumenten. Ein Handbuch. Quintessenz, Berlin

  12. Baumann MA (2004) Nickel-titanium: options and challenges. Dent Clin North Am 48:55–67. https://doi.org/10.1016/j.cden.2003.11.001

    Article  PubMed  Google Scholar 

  13. McSpadden J (2007) Mastering endodontic instrumentation. Cloudland Institute, Chattanooga

  14. Shen Y, Zhou HM, Zheng YF, Peng B, Haapasalo M (2013) Current challenges and concepts of the thermomechanical treatment of nickel-titanium instruments. J Endod 39:163–172. https://doi.org/10.1016/j.joen.2012.11.005

    Article  PubMed  Google Scholar 

  15. Zupanc J, Vahdat-Pajouh N, Schäfer E (2018) New thermomechanically treated NiTi alloys - a review. Int Endod J 51:1088–1103. https://doi.org/10.1111/iej.12924

    Article  PubMed  Google Scholar 

  16. Bauer J, Spackman S, Chiappelli F, Prolo P (2005) Evidence-based decision making in dental practice. J Evid Based Dent Pract 5:125–130. https://doi.org/10.1016/j.jebdp.2005.06.001

    Article  PubMed  Google Scholar 

  17. Hülsmann M, Donnermeyer D, Schafer E (2019) A critical appraisal of studies on cyclic fatigue resistance of engine- driven endodontic instruments. Int Endod J 52:1427–1445. https://doi.org/10.1111/iej.13182

    Article  PubMed  Google Scholar 

  18. Hülsmann M (2019) Research that matters: studies on fatigue of rotary and reciprocating NiTi root canal instruments. Int Endod J 52:1401–1402. https://doi.org/10.1111/iej.13194

    Article  PubMed  Google Scholar 

  19. Govindan K, Shankar KM, Kannan D (2016) Sustainable material selection for construction industry – a hybrid multi criteria decision making approach. Renew Sustain Energy Rev 55:1274–1288. https://doi.org/10.1016/j.rser.2015.07.100

    Article  Google Scholar 

  20. Adunlin G, Diaby V, Xiao H (2015) Application of multicriteria decision analysis in health care: a systematic review and bibliometric analysis. Health Expect 18:1894–1905. https://doi.org/10.1111/hex.12287

    Article  PubMed  Google Scholar 

  21. Mousavi-Nasab SH, Sotoudeh-Anvari A (2017) A comprehensive MCDM-based approach using TOPSIS, COPRAS and DEA as an auxiliary tool for material selection problems. Mater Des 121:237–253. https://doi.org/10.1016/j.matdes.2017.02.041

    Article  Google Scholar 

  22. Büyüközkan G, Göçer F (2019) Smart medical device selection based on intuitionistic fuzzy Choquet integral. Soft Comput 23:10085–10103. https://doi.org/10.1007/s00500-018-3563-5

    Article  Google Scholar 

  23. Aherwar A, Singh T, Singh A, Patnaik A, Fekete G (2019) Optimum selection of novel developed implant material using hybrid entropy-PROMETHEE approach Materialwiss. Werkstofftech 50:1232–1241. https://doi.org/10.1002/mawe.201800088

    Article  Google Scholar 

  24. Sofuoğlu MA (2021) A new biomaterial selection approach using reference ideal method. Indian Acad Sci Sådhanå 46:36. https://doi.org/10.1007/s12046-021-01559-7volVv

    Article  Google Scholar 

  25. Diaby V, Goeree R (2014) How to use multi-criteria decision analysis methods for reimbursement decision-making in healthcare: a step-by-step guide. Expert Rev Pharmacoecon Outcomes Res 14:81–99. https://doi.org/10.1586/14737167.2014.859525

    Article  PubMed  Google Scholar 

  26. Delphi Method https://www.rand.org/topics/delphi-method.html (Access date: 26.06.2021)

  27. Kim M, JangYC Lee S (2013) Application of Delphi-AHP methods to select the priorities of WEEE for recycling in a waste management decision-making tool. J Environ Manage 128:941–948. https://doi.org/10.1016/j.jenvman.2013.06.049

    Article  PubMed  Google Scholar 

  28. Deniz N, Büyük K (2019) Developing an inpatient perceived healthcare service quality scale (IP-HSQS) DEU J of GSSS 21:1377-1410. https://doi.org/10.16953/deusosbil.519872

  29. Deniz N, Özcelik F (2019) A solution approach proposal for disassembly line balancing based on ELECTRE. Alphanumeric J 7:399–416. https://doi.org/10.17093/alphanumeric.559310

    Article  Google Scholar 

  30. Emerson P (2013) The original Borda count and partial voting. Soc Choice Welf 40:353–358. https://doi.org/10.1007/s00355-011-0603-9

    Article  Google Scholar 

  31. Zionts S, Wallenius J (1983) An interactive multiple objective linear programming method for a class of underlying nonlinear utility functions. Manag Sci 29:519–529. https://doi.org/10.1287/mnsc.29.5.519

    Article  Google Scholar 

  32. Kaliszewski I, Podkopaev D (2016) Simple additive weighting-Meta model for multiple criteria decision analysis methods. Expert Syst Appl 54:155–161. https://doi.org/10.1016/j.eswa.2016.01.042

    Article  Google Scholar 

  33. Sobral APT, Sobral SS, Motta PDB, Bussadori S, Motta LJ (2016) Factors influencing dental surgeons when choosing a low involvement dental material. Revista Espacios 37:1–10

    Google Scholar 

  34. American National Standards /American Dental Association specifications No. 28 - January 2008. Root canal files and reamers, type K

  35. International Organization for Standardization. Dentistry—Root-canal Instruments—Part 1: General requirements and test methods. ISO 3630–1, 2019.

  36. Shen Y, Cheung GS (2013) Methods and models to study nickel–titanium instruments. Endod Topics 29:18–41. https://doi.org/10.1111/etp.12046

    Article  Google Scholar 

  37. Zinelis S, Eliades T, Eliades G (2010) A metallurgical characterization of ten endodontic Ni-Ti instruments: assessing the clinical relevance of shape memory and superelastic properties of Ni-Ti endodontic instruments. Int Endod J 43:125–134. https://doi.org/10.1111/j.1365-2591.2009.01651.x

    Article  PubMed  Google Scholar 

  38. Ferreira F, Adeodato C, Barbosa I, Aboud L, Scelza P, ZaccaroScelza M (2017) Movement kinematics and cyclic fatigue of NiTi rotary instruments: a systematic review. Int Endod J 50:143–152. https://doi.org/10.1111/iej.12613

    Article  PubMed  Google Scholar 

  39. Dickson GW (1966) An analysis of vendor selection: systems and decisions. J Purch 2:5–17. https://doi.org/10.1111/j.1745-493X.1966.tb00818.x

    Article  Google Scholar 

  40. Han SL, Sung HS (2008) Industrial brand value and relationship performance in business markets - a general structural equation model. Ind Mark Manag 37:807–818. https://doi.org/10.1016/j.indmarman.2008.03.003

    Article  Google Scholar 

  41. Ho CC (2011) Optimal evaluation of infectious medical waste disposal companies using the fuzzy analytic hierarchy process. Waste Manag 31:1553–1559. https://doi.org/10.1016/j.wasman.2011.02.020

    Article  PubMed  Google Scholar 

  42. Chan AWY, Ko EHT, Ho EYL, Chiu DKW, Chan EYL (2015) Information seeking behaviour and purchasing decision: case study in digital cameras. EAI Endorsed Trans Ind Netw Intell Syst 2:e3. https://doi.org/10.4108/inis.2.3.e3

    Article  Google Scholar 

  43. Zhang Y (2015) The impact of brand image on consumer behavior: a literature review. OJBM 3:58–62. https://doi.org/10.4236/ojbm.2015.31006

    Article  Google Scholar 

  44. Doolin B, Dillon S, Thompson F, Corner JL (2005) Perceived risk, the internet shopping experience and online purchasing behavior: a New Zealand perspective. J Glob Inf Manag 13:66–88. https://doi.org/10.4018/jgim.2005040104

    Article  Google Scholar 

  45. Luthra S, Govindan K, Kannan D, Mangla SK, Garg CP (2017) An integrated framework for sustainable supplier selection and evaluation in supply chains. J Clean Prod 140:1686–1698. https://doi.org/10.1016/j.jclepro.2016.09.078

    Article  Google Scholar 

  46. Mühlbacher AC, Kaczynski A (2016) Making good decisions in healthcare with multi-criteria decision analysis: the use, current research and future development of MCDA. Appl Health Econ Health Policy 14:29–40. https://doi.org/10.1007/s40258-015-0203-4

    Article  PubMed  Google Scholar 

  47. Thangaratinam S, Redman CWE (2005) The Delphi technique. Obstet Gynecol 7:120–125. https://doi.org/10.1576/toag.7.2.120.27071

    Article  Google Scholar 

  48. Ayre C, Scally AJ (2014) Critical values for Lawshe’s content validity ratio: Revisiting the original methods of calculation. Meas Eval Couns Dev 47:79–86. https://doi.org/10.1177/0748175613513808

    Article  Google Scholar 

  49. Emovon I, Norman RA, Murphy AJ (2018) Hybrid MCDM based methodology for selecting the optimum maintenance strategy for ship machinery systems. J Intell Manuf 29:519–531. https://doi.org/10.1007/s10845-015-1133-6

    Article  Google Scholar 

  50. Abdullah L, Adawiyah C (2014) Simple additive weighting methods of multi criteria decision making and applications: a decade review. Inform Process Manag 5:39–49

    Google Scholar 

  51. Elangovan S, Guzman-Armstrong S, Marshall TA, Johnsen DC (2018) Clinical decision making in the era of evidence-based dentistry. J Am Dent Assoc 149:745–757. https://doi.org/10.1016/j.adaj.2018.06.001

    Article  PubMed  Google Scholar 

  52. Mobinizadeh M, Raeissi P, Nasiripour AA, Olyaeemanesh A, Tabibi SJ (2016) A model for priority setting of health technology assessment: the experience of AHP-TOPSIS combination approach. DARU J Pharm Sci 24:10. https://doi.org/10.1186/s40199-016-0148-7

    Article  Google Scholar 

  53. Abdel-Basset M, Manogaran G, Gamal A, Smarandache F (2019) A group decision making framework based on neutrosophic TOPSIS approach for smart medical device selection. J Med Syst 43:38. https://doi.org/10.1007/s10916-019-1156-1

    Article  PubMed  Google Scholar 

  54. Hafezalkotob A, Hafezalkotob A (2016) Extended MULTIMOORA method based on Shannon entropy weight for materials selection. J Ind Eng Int 12:1–13. https://doi.org/10.1007/s40092-015-0123-9

    Article  Google Scholar 

  55. Singh M, Pant M, Godiyal RD, Sharma AK (2020) MCDM approach for selection of raw material in pulp and papermaking industry. Mater Manuf Process 35:241–249. https://doi.org/10.1080/10426914.2020.1711917

    Article  Google Scholar 

  56. Ertas H, Capar ID, Arslan H, Akan E (2014) Comparison of cyclic fatigue resistance of original and counterfeit rotary instruments. Biomed Eng Online 13:67. https://doi.org/10.1186/1475-925X-13-67

    Article  PubMed  PubMed Central  Google Scholar 

  57. Rodrigues CS, Vieira VTL, Antunes HS, De-Deus G, Elias CN, Moreira EJL, Silva EJNL (2018) Mechanical characteristics of counterfeit Reciproc instruments: a call for attention. Int Endod J 51:556–563. https://doi.org/10.1111/iej.12792

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank each of the seven panelists individually for their significant contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurcan Deniz.

Ethics declarations

Ethical approval

Not Available

Informed consent

Not Available

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supporting file S1: Proposed NiTi instrument assessment model template (XLSX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deniz, N., Orhan, E.O. Development of a multi-criteria decision-making–based assessment model for dental material selection: Engine-driven nickel-titanium instruments case study. Clin Oral Invest 26, 2645–2659 (2022). https://doi.org/10.1007/s00784-021-04234-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-021-04234-7

Keywords

Navigation