Skip to main content

Advertisement

Log in

Prenatal, perinatal and postnatal events associated with hypomineralized second primary molar: a systematic review with meta-analysis

  • Review
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objective

The etiology of hypomineralized second primary molar (HSPM) appears to be multifactorial but remains uncertain. Thus, the objective was to systematically review studies that investigated adverse health conditions in the prenatal, perinatal and postnatal periods associated with HSPM.

Material and methods

The search was carried out in five databases and in gray literature. The risk of bias of observational studies was analyzed according to the Newcastle–Ottawa scale.

Results

A total of 1878 studies were identified. Fourteen were eligible, and seven were included in the meta-analysis. Maternal smoking (OR = 2.88; 95%CI: 1.62–5.15) and presence of maternal hypertension (OR = 2.91; 95%CI: 1.35–6.28) were significantly associated with higher odds of HSPM. In the perinatal period, factors associated with HSPM were low birth weight (OR = 1.50; 95%CI: 1.15–1.96), prematurity (OR = 1.93; 95%CI: 1.37–2.71), delivery complications (OR = 2.42; 95%CI: 1.52–3.83) and need for an incubator (OR = 1.65; 95%CI: 1.01–2.70). Not breastfeeding (OR = 1.26; 95%CI: 1.01–1.58), use of antibiotics by the child (OR = 1.24; 95%CI: 1.04–1.48), fever (OR = 1.37; 95%CI: 1.10–1.72) and asthma (OR = 1.91; 95%CI: 1.16–3.13) were the postnatal factors associated with HSPM.

Conclusion

Maternal smoking, maternal hypertension, low birth weight, prematurity, delivery complications, need for incubation, not breastfeeding, antibiotic use, fever and childhood asthma were associated with HSPM. Well-designed prospective cohort studies are needed.

Clinical relevance

Understanding the etiological factors can be guiding aspects for individual clinical approaches, as well as guiding the design of preventive interventions for HSPM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Elfrink MEC, Schuller AA, Weerheijm KL, Veerkamp JSJ (2008) Hypomineralized second primary molars: prevalence data in Dutch 5-year-olds. Caries Res 42:282–285. https://doi.org/10.1159/000135674

    Article  PubMed  Google Scholar 

  2. Elfrink MEC, Moll HA, Kiefte-de Jong JC, Jaddoe VWV, Hofman A, Ten Cate JM, Veerkamp JSJ (2014) Pre- and postnatal determinants of deciduous molar hypomineralisation in 6-year-old children. The Generation R Study. PLoS One 9:e91057. https://doi.org/10.1371/journal.pone.0091057

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wagner Y (2017) Developmental defects of enamel in primary teeth findings of a regional German birth cohort study. BMC Oral Health 17:1–8. https://doi.org/10.1186/s12903-016-0235-7

    Article  Google Scholar 

  4. Halal F, Raslan N (2020) Prevalence of hypomineralised second primary molars (HSPM) in Syrian preschool children. Eur Arch Paediatr Dent 21:711–717. https://doi.org/10.1007/s40368-020-00520-2

    Article  PubMed  Google Scholar 

  5. Owen ML, Ghanim A, Elsby D, Manton DJ (2018) Hypomineralized second primary molars: prevalence, defect characteristics and relationship with dental caries in Melbourne preschool children. Aust Dent J 63:72–80. https://doi.org/10.1111/adj.12567

    Article  PubMed  Google Scholar 

  6. Lima LRS, Pereira AS, de Moura MS, Lima CCB, Paiva SM, Moura LDFA, de Deus Moura de Lima M (2020) Pre-term birth and asthma is associated with hypomineralized second primary molars in pre-schoolers: a population-based study. Int J Paediatr Dent 30:193-201. https://doi.org/10.1111/ipd.12584

  7. Ebel M, Bekes K, Klode C, Hirsch C (2018) The severity and degree of hypomineralisation in teeth and its influence on oral hygiene and caries prevalence in children. Int J Paediatr Dent 28:648–657. https://doi.org/10.1111/ipd.12425

    Article  PubMed  Google Scholar 

  8. Silva MJ, Kilpatrick NM, Craig JM, Manton DJ, Burgner LP, D, Scurrah KJ, (2019) Etiology of hypomineralized second primary molars: a prospective twin study. J Dent Res 98:77–83. https://doi.org/10.1177/0022034518792870

    Article  PubMed  Google Scholar 

  9. Lopes-Fatturi A, Menezes JVNB, Fraiz FC, Assunção LRDS, de Souza JF (2019) Systemic exposures associated with hypomineralized primary second molars. Pediatr Dent 41:364–370

    PubMed  Google Scholar 

  10. Folayan MO, El Tantawi M, Oginni AB, Alade M, Adeniyi A, Finlayson TL (2020) Malnutrition, enamel defects, and early childhood caries in preschool children in a sub-urban Nigeria population. PLoS ONE 15:e0232998. https://doi.org/10.1371/journal.pone.0232998

    Article  PubMed  PubMed Central  Google Scholar 

  11. Serna Muñoz C, Ortiz Ruiz AJ, Pérez Silva A, Bravo-González LA, Vicente A (2020) Second primary molar hypomineralisation and drugs used during pregnancy and infancy. A systematic review. Clin Oral Investig 24:1287–1297. https://doi.org/10.1007/s00784-019-03007-7

    Article  PubMed  Google Scholar 

  12. Silva MJ, Scurrah KJ, Craig JM, Manton DJ, Kilpatrick N (2016) Etiology of molar incisor hypomineralization—a systematic review. Community Dent Oral Epidemiol 44:342–353. https://doi.org/10.1111/cdoe.12229

    Article  PubMed  Google Scholar 

  13. Stroup DF, Berlin JA, Morton SC et al (2000) Meta-analysis of observational studies in epidemiology: a proposal for reporting: Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 283:2008–2012. https://doi.org/10.1001/jama.283.15.2008

    Article  PubMed  Google Scholar 

  14. Wells G, Shea B, ÓConnell D, Petersen J et al (2020). The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomized studies in meta-analyses. Canada: Department of Epidemiology and Community Medicine, University of Ottawa. http:// www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Accessed 25 Nov 2020

  15. Herzog R, Álvarez-Pasquin MJ, Díaz C et al (2013) Are healthcare workers’ intentions to vaccinate related to their knowledge, beliefs and attitudes? A systematic review. BMC Public Health 13:1–17. https://doi.org/10.1186/1471-2458-13-154

    Article  Google Scholar 

  16. Lo CK, Mertz D, Loeb M (2014) Newcastle-Ottawa Scale: comparing reviewers’ to authors’ assessments. BMC Med Res Methodol 14:1–5. https://doi.org/10.1186/1471-2288-14-45

    Article  Google Scholar 

  17. Higgins J, Altman D, Sterne J (2011) on behalf of the Cochrane Statistical Methods Group and the Cochrane Bias Methods Group. Chapter 8: Assessing risk of bias in included studies. Cochrane handbook for systematic reviews of interventions version. 5

  18. Arjona EF de (2018) Defeito de desenvolvimento do esmalte dentário e cárie da primeira infância em crianças prematuras e com baixo peso ao nascer. Dissertation, Universidade Federal de Minas Gerais.

  19. Beth SA, Jansen MA, Elfrink ME, Kiefte-de Jong JC, Wolvius EB, Jaddoe VW, van Zelm MC, Moll HA (2016) Generation R birth cohort study shows that specific enamel defects were not associated with elevated serum transglutaminase type 2 antibodies. Acta Paediatr 105:e485–e491. https://doi.org/10.1111/apa.13533

    Article  PubMed  Google Scholar 

  20. Corrêa-Faria P, Martins-Júnior PA, Vieira-Andrade RG, Oliveira-Ferreira F, Marques LS, Ramos-Jorge ML (2013) Developmental defects of enamel in primary teeth: prevalence and associated factors. Int J Paediatr Dent 23:173–179. https://doi.org/10.1111/j.1365-263X.2012.01241.x

    Article  PubMed  Google Scholar 

  21. Elger W, Illge C, Kiess W, Körner A, Kratzsch J, Schrock A, Hirsch C (2020) Relationship between deciduous molar hypomineralisation and parameters of bone metabolism in preschool children. Int Dent J 70:303–307. https://doi.org/10.1111/idj.12550

    Article  PubMed  Google Scholar 

  22. Ferrini FR, Marba ST, Gavião MB (2008) Oral conditions in very low and extremely low birth weight children. J Dent Child 75:235–242

    Google Scholar 

  23. Gonzalez BAC (2015) Associação dos indicadores socioeconômicos, fatores pré e perinatais na ocorrência de defeitos de desenvolvimento de esmalte na dentição decídua: estudo de base populacional. Thesis, Universidade Federal de Minas Gerais

  24. Li Y, Navia JM, Bian JY (1995) Prevalence and distribution of developmental enamel defects in primary dentition of Chinese children 3–5 years old. Community Dent Oral Epidemiol 23:72–79. https://doi.org/10.1111/j.1600-0528.1995.tb00204.x

    Article  PubMed  Google Scholar 

  25. Pascon T, Barbosa AMP, Cordeiro RCL, Bussaneli DG, Prudencio CB, Nunes SK, Pinheiro FA, Bossolan G, Oliveira LG, Calderon IMP, Marini G, Rudge MVC (2019) Prenatal exposure to gestational diabetes mellitus increases developmental defects in the enamel of offspring. PLoS ONE 14:e0211771. https://doi.org/10.1371/journal.pone.0211771

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fatturi AL, Menoncin BL, Reyes MT, Meger M, Scariot R, Brancher JA, Küchler EC, Feltrin-Souza J (2020) The relationship between molar incisor hypomineralization, dental caries, socioeconomic factors, and polymorphisms in the vitamin D receptor gene: a population-based study. Clin Oral Investig 24:3971–3980. https://doi.org/10.1007/s00784-020-03263-y

    Article  PubMed  Google Scholar 

  27. Nørrisgaard PE, Haubek D, Kühnisch J, Chawes BL, Stokholm J, Bønnelykke K, Bisgaard H (2019) Association of high-dose vitamin D supplementation during pregnancy with the risk of enamel defects in offspring: a 6-year follow-up of a randomized clinical trial. JAMA Pediatr 173:924–930. https://doi.org/10.1001/jamapediatrics.2019.2545

    Article  PubMed  PubMed Central  Google Scholar 

  28. Norén JG, Ranggård L, Klingberg G, Persson C, Nilsson K (1993) Intubation and mineralization disturbances in the enamel of primary teeth. Acta Odontol Scand 51:271–275. https://doi.org/10.3109/00016359309040577

    Article  PubMed  Google Scholar 

  29. Kabakcieva R, Peneva M (1989) Hypomineralization of milk teeth of prematurely born children—effect of some factors for its origination. Stomatologiia Stomatology 71:1–6

    PubMed  Google Scholar 

  30. Zheng S, Deng H, Bao Y (2003) The study on the clinical manifestation of developmental enamel defects in primary dentition. Hua Xi Kou Qiang Yi Xue Za Zhi. 21:200–1–204

  31. Costa-Silva CM, Paula JS, Ambrosano GMB, Mialhe FL (2013) Influence of deciduous molar hypomineralization on the development of molar-incisor hypomineralization. Braz J Oral Sci 12:335–338

    Article  Google Scholar 

  32. Elfrink MEC, Moll HA, Kiefte-de Jong JC et al (2013) Is maternal use of medicines during pregnancy associated with deciduous molar hypomineralisation in the offspring? A prospective, population-based study. Drug Saf 36:627–633. https://doi.org/10.1007/s40264-013-0078-y

    Article  PubMed  Google Scholar 

  33. Ghanim AM, Morgan MV, Mariño RJ, Bailey DL, Manton DJ (2012) Risk factors of hypomineralised second primary molars in a group of Iraqi schoolchildren. Eur Arch Paediatr Dent 13:111–118. https://doi.org/10.1007/BF03262856

    Article  PubMed  Google Scholar 

  34. Kar S, Sarkar S, Mukherjee A (2014) Prevalence and distribution of developmental defects of enamel in the primary dentition of IVF children of West Bengal. J Clin Diagn Res 8:ZC73-ZC76. https://doi.org/10.7860/JCDR/2014/8725.4639

  35. Lira A de LS de, Sousa FJ de, Sousa FDC de, Fontenele MKV, Ribeiro CKC, Ferreira LEG (2021) Prevalence and predisponent factors of molar-incisor hypomineralization in primary dentition. Braz J Oral Sci. 20:1–12. https://doi.org/10.20396/bjos.v20i00.8661202

  36. Schüttfort G, Hofler S, Kann G et al (2020) Influence of tenofovir exposure in utero on primary dentition. Eur J Pediatr 179:1761–1768. https://doi.org/10.1007/s00431-020-03660-1

    Article  PubMed  Google Scholar 

  37. Sidaly R, Schmalfuss A, Skaare AB, Sehic A, Stiris T, Espelid I (2017) Five-minute Apgar score≤ 5 and molar incisor hypomineralisation (MIH)—a case control study. BMC Oral Health 17:1–7. https://doi.org/10.1186/s12903-016-0253-5

    Article  Google Scholar 

  38. van der Tas JT, Elfrink MEC, Vucic S et al (2016) Association between bone mass and dental hypomineralization. J Dent Res 95:395–401. https://doi.org/10.1177/0022034515625470

    Article  PubMed  Google Scholar 

  39. van der Tas JT, Elfrink MEC, Heijboeret AC, al, (2018) Foetal, neonatal and child vitamin D status and enamel hypomineralization. Community Dent Oral Epidemiol 46:343–351. https://doi.org/10.1111/cdoe.12372

    Article  PubMed  PubMed Central  Google Scholar 

  40. Weerheijm KL, Duggal M, Mejáre I et al (2003) Judgement criteria for molar incisor hypomineralisation (MIH) in epidemiologic studies: a summary of the European meeting on MIH held in Athens. Eur J Paediatr Dent 4:110–113

    PubMed  Google Scholar 

  41. Salas MMS, Chisini LA, da Silva CV, Castro IS, Teixeira LS, Demarco FF (2016) Defeitos de esmalte não fluoróticos em crianças: aspectos clínicos e epidemiológicos. Revista Da Faculdade de Odontologia-UPF 21:251–259. https://doi.org/10.5335/rfo.v21i2.5428

    Article  Google Scholar 

  42. Dourado DG, Lima CCB, Silva RNC, Tajra FS, Moura MS, Lopes TSP, De Deus Moura LFA, de Lima MDM (2020) Molar-incisor hypomineralization in quilombola children and adolescents: A study of prevalence and associated factors. J Public Health Dent 1-10. https://doi.org/10.1111/jphd.12429

  43. Dong Q, Wu H, Dong G, Lou B, Yang L, Zhang L (2011) The morphology and mineralization of dental hard tissue in the offspring of passive smoking rats. Arch Oral Biol 56:1005–1013. https://doi.org/10.1016/j.archoralbio.2011.02.017

    Article  PubMed  Google Scholar 

  44. Jiménez-Farfan D, Guevara J, Zenteno E, Hernandez-Guerrero JC (2005) Alteration of the sialylation pattern of the murine tooth germ after ethanol exposure. Birth Defects Res A Clin Mol Teratol 73:980–988. https://doi.org/10.1002/bdra.20198

    Article  PubMed  Google Scholar 

  45. Fatturi AL, Wambier LM, Chibinski AC, Assunção LRDS, Brancher JA, Reis A, Souza JF (2019) A systematic review and meta-analysis of systemic exposure associated with molar incisor hypomineralization. Community Dent Oral Epidemiol 47:407–415. https://doi.org/10.1111/cdoe.12467

    Article  PubMed  Google Scholar 

  46. Pinborg A, Wennerholm UB, Romundstad L, Loft A, Aittomaki K, Söderström-Anttila V, Nygren K, Hazekamp J, Bergh C (2013) Why do singletons conceived after assisted reproduction technology have adverse perinatal outcome? Systematic review and meta-analysis. Hum Reprod Update 19:87–104. https://doi.org/10.1093/humupd/dms044

    Article  PubMed  Google Scholar 

  47. World Health Organization (2013) Oral health surveys: basic methods. World Health Organization.

  48. Tan Q, Li S, Frost M et al (2018) Epigenetic signature of preterm birth in adult twins. Clin Epigenetics 10:1–10. https://doi.org/10.1186/s13148-018-0518-8

    Article  Google Scholar 

  49. Andrade NS, Pontes AS, de Sousa Paz HE, de Moura MS, Moura LF, Lima MD (2017) Molar incisor hypomineralization in HIV-infected children and adolescents. Spec Care Dentist 37:28–37. https://doi.org/10.1111/scd.12209

    Article  PubMed  Google Scholar 

  50. Pitiphat W, Luangchaichaweng S, Pungchanchaikul P, Angwaravong O, Chansamak N (2014) Factors associated with molar incisor hypomineralization in Thai children. Eur J Oral Sci 122:265–270. https://doi.org/10.1111/eos.12136

    Article  PubMed  Google Scholar 

  51. Garot E, Manton D, Rouas P (2016) Peripartum events and molar-incisor hypomineralisation (MIH) amongst young patients in southwest France. Eur Arch Paediatr Dent 17:245–250. https://doi.org/10.1007/s40368-016-0235-y

    Article  PubMed  Google Scholar 

  52. World Health Organization (2018) WHO recommendations: intrapartum care for a positive childbirth experience. Geneva: World Health Organization

  53. World Health Organization (2018). Infant and young child feeding. Fact Sheet. WHO Media Centre. http://www.who.int/mediacentre/factsheets/fs342/en/. Accessed 22 Dec 2020

  54. Abrams EM, Ben-Shoshan M (2019) Should testing be initiated prior to amoxicillin challenge in children? Clin Exp Allergy 49:1060–1066. https://doi.org/10.1111/cea.13443

    Article  PubMed  Google Scholar 

  55. Laisi S, Ess A, Sahlberg C, Arvio P, Lukinmaa PL, Alaluusua S (2009) Amoxicillin may cause molar incisor hypomineralization. J Dent Res 88:132–136. https://doi.org/10.1177/0022034508328334

    Article  PubMed  Google Scholar 

  56. Ryynänen H, Sahlberg C, Lukinmaa PL, Alaluusua S (2014) The effect of high temperature on the development of mouse dental enamel in vitro. Arch Oral Biol 59:400–406. https://doi.org/10.1016/j.archoralbio.2014.01.005

    Article  PubMed  Google Scholar 

  57. Tung K, Fujita H, Yamashita Y, Takagi Y (2006) Effect of turpentine-induced fever during the enamel formation of rat incisor. Arch Oral Biol 51:464–470. https://doi.org/10.1016/j.archoralbio.2005.12.001

    Article  PubMed  Google Scholar 

  58. Hernandez M, Boj J, Espasa E, Planells P, Peretz B (2018) Molar‐incisor hypomineralization: positive correlation with atopic dermatitis and food allergies. J Clin Pediatr Dent 42:344‐348. https://doi.org/10.17796/1053-4625-42.5.4

  59. Rehman Q, Lane NE (2003) Effect of glucocorticoids on bone density. Med Pediatr Oncol 41:212–216. https://doi.org/10.1002/mpo.10339

    Article  PubMed  Google Scholar 

  60. Mastora A, Vadiakas G, Agouropoulos A, Gartagani-Panagiotopoulou P, Gemou Engesaeth V (2017) Developmental defects of enamel in first permanent molars associated with use of asthma drugs in preschool aged children: a retrospective case-control study. Eur Arch Paediatr Dent 18:105–111. https://doi.org/10.1007/s40368-017-0280-1

    Article  PubMed  Google Scholar 

  61. Crombie F, Manton D, Kilpatrick N (2009) Aetiology of molar-incisor hypomineralization: a critical review. Int J Paediatr Dent 19:73–83. https://doi.org/10.1111/j.1365-263X.2008.00966.x

    Article  PubMed  Google Scholar 

  62. Pinto GDS, Costa FDS, Machado TV, Hartwig A, Pinheiro RT, Goettems ML, Demarco FF (2018) Early-life events and developmental defects of enamel in the primary dentition. Community Dent Oral Epidemiol 46(5):511–517. https://doi.org/10.1111/cdoe.12408

    Article  PubMed  Google Scholar 

  63. Berdal A, Papagerakis P, Hotton D, Bailleul-Forestier I, Davideau JL (1995) Ameloblasts and odontoblasts, target-cells for 1,25-dihydroxyvitamin D3: a review. Int J Dev Biol 39:257–262

    PubMed  Google Scholar 

  64. Reed SG, Voronca D, Wingate JS, Murali M, Lawson AB, Hulsey TC, Ebeling MD, Hollis BW, Wagner CL (2017) Prenatal vitamin D and enamel hypoplasia in human primary maxillary central incisors: a pilot study. Pediatr Dent J 27:21–28. https://doi.org/10.1016/j.pdj.2016.08.001

    Article  PubMed  Google Scholar 

  65. Cagetti MG, Wolf TG, Tennert C, Camoni N, Lingström P, Campus G (2020) The role of vitamins in oral health. a systematic review and meta-analysis. Int J Environ Res Public Health17:938. https://doi.org/10.3390/ijerph17030938

  66. Smith CE (1998) Cellular and chemical events during enamel maturation. Crit Rev Oral Biol Med 9:128–161. https://doi.org/10.1177/10454411980090020101

    Article  PubMed  Google Scholar 

  67. Zhu K, Prince RL (2012) Calcium and bone. Clin Biochem 45:936–942

    Article  PubMed  Google Scholar 

  68. Elfrink ME, ten Cate JM, van Ruijven LJ, Veerkamp JS (2013) Mineral content in teeth with deciduous molar hypomineralisation (DMH). J Dent 41:974–978. https://doi.org/10.1016/j.jdent.2013.08.024

    Article  PubMed  Google Scholar 

  69. Avena-Woods C (2017) Overview of atopic dermatitis. Am J Manag Care 23:S115–S123

    PubMed  Google Scholar 

  70. Garot E, Denis A, Delbos Y, Manton D, Silva M, Rouas P (2018) Are hypomineralised lesions on second primary molars (HSPM) a predictive sign of molar incisor hypomineralisation (MIH)? A systematic review and a meta-analysis. J Dent 72:8–13. https://doi.org/10.1016/j.jdent.2018.03.005

    Article  PubMed  Google Scholar 

Download references

Funding

The study received funding from the Brazilian Coordination of Higher Education, Ministry of Education (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Jordana Santos Lima.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the author.

Consent to participate

For this type of study, formal consent is not required.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, L.J.S., Ramos-Jorge, M.L. & Soares, M.E.C. Prenatal, perinatal and postnatal events associated with hypomineralized second primary molar: a systematic review with meta-analysis. Clin Oral Invest 25, 6501–6516 (2021). https://doi.org/10.1007/s00784-021-04146-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-021-04146-6

Keywords

Navigation