Skip to main content

Advertisement

Log in

Microbiological and SEM assessment of atraumatic restorative treatment in adult dentition

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

To investigate the practicability of atraumatic restorative treatment (ART) in adults in terms of marginal adaptation of restorations and microbiological changes in residual carious dentin.

Materials and methods

The occlusal dentin caries of 25 permanent molar teeth were removed with hand instruments. The total counts of bacteria (TCB) and the facultative anaerobic bacteria (FAB), mutans streptococci (MS), and Lactobacillus spp. (LB) counts in the affected dentin were evaluated quantitatively. The weights of the samples were measured with an electronic balance (Shimadzu, Type AX200, Japan). The cavities were restored with glass ionomer cement (KetacTM Molar Easymix, ESPE Dental AG, Seefeld, Germany). Twenty replicas of randomly selected ART restorations were prepared and marginal adaptation was evaluated by scanning electron microscopy (SEM). After 6 months, the same protocols were repeated. Data were analyzed with paired sample t-tests, Wilcoxon t-tests, Pearson and Spearman correlations, and chi-square tests (p<0.05).

Results

In the sixth month, restoration loss and pulpitis were not observed. The mean weight of samples removed from the cavity floor was less than the baseline (0.014±0.009 and 0.023±0.013 g, respectively) (p<0.01), and the counts of total bacteria, FAB, MS, and LB significantly decreased compared to baseline (p<0.01). The frequency of marginal gaps was increased (p< 0.01).

Conclusions

ART showed that the counts of microorganisms decreased after 6 months although the marginal gap rates of restorations increased.

Clinical relevance

ART can be a reliable treatment approach in adults for 6 months due to the decrease in microorganism counts, although gaps exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Frencken J, Makoni F, Sithole WD (1996) Atraumatic restorative treatment and glass-ionomer sealants in a school oral health programme in Zimbabwe: evaluation after 1 year. Caries Res 30(6):428–433. https://doi.org/10.1159/000262355

    Article  PubMed  Google Scholar 

  2. Zhang C, Campbell SD, Dickens SH, Yang B (2019) Remineralization of natural human carious dentin lesions with an experimental whisker-reinforced atraumatic restorative treatment composite. J Prosthodont 28(8):920–926. https://doi.org/10.1111/jopr.12754

    Article  PubMed  Google Scholar 

  3. Toi CS, Bönecker M, Cleaton-Jones PE (2003) Mutans streptococci strains prevalence before and after cavity preparation during Atraumatic Restorative Treatment. Oral Microbiol Immunol 18(3):160–164. https://doi.org/10.1034/j.1399-302X.2003.00051.x

    Article  PubMed  Google Scholar 

  4. Pinheiro SL, Simionato MR, Imparato JC, Oda M (2005) Antibacterial activity of glass-ionomer cement containing antibiotics on caries lesion microorganisms. Am J Dent 18(4):261–266

    PubMed  Google Scholar 

  5. Ersin NK, Candan U, Aykut A, Onçağ O, Eronat C, Kose T (2006) A clinical evaluation of resin-based composite and glass ionomer cement restorations placed in primary teeth using the ART approach: results at 24 months. J Am Dent Assoc 137(11):1529–1536. https://doi.org/10.14219/jada.archive.2006.0087

    Article  PubMed  Google Scholar 

  6. Frenken JE, Imazato S, Toi C, Mulder J, Mickenautsch S, Takahashi Y, Ebisu S (2007) Antibacterial effect of chlorhexidine-containing glass ionomer cement in vivo: a pilot study. Caries Res 41:102–107. https://doi.org/10.1159/000098042

    Article  Google Scholar 

  7. Kabil NS, Badran AS, Wassel MO (2017) Effect of the addition of chlorhexidine and miswak extract on the clinical performance and antibacterial properties of conventional glass ionomer: an in vivo study. Int J Paediatr Dent 27(5):380–387. https://doi.org/10.1111/ipd.12273

    Article  PubMed  Google Scholar 

  8. Longo JPF, Leal SC, Simioni AR, de Fátima Menezes Almeida-Santos M, Tedesco AC, Azevedo RB (2012) Photodynamic therapy disinfection of carious tissue mediated by aluminum-chloride-phthalocyanine entrapped in cationic liposomes: an in vitro and clinical study. Lasers Med Sci 27(3):575–584. https://doi.org/10.1007/s10103-011-0962-6

    Article  PubMed  Google Scholar 

  9. Joshi JS, Roshan NM, Sakeenabi B, Poornima P, Nagaveni NB, Subbareddy VV (2017) Inhibition of residual cariogenic bacteria in atraumatic restorative treatment by chlorhexidine: disinfection or incorporation. Pediatr Dent 39(4):308–312

    PubMed  Google Scholar 

  10. Massara ML, Alves JB, Brandão PR (2002) Atraumatic restorative treatment: clinical, ultrastructural and chemical analysis. Caries Res 36(6):430–436. https://doi.org/10.1159/000066534

    Article  PubMed  Google Scholar 

  11. Arrow P, Forrest H (2020) Atraumatic restorative treatments improve child oral health-related quality of life: A noninferiority randomized controlled trial. Community Dent Oral Epidemiol 48(4):349–356. https://doi.org/10.1111/cdoe.12539

    Article  PubMed  Google Scholar 

  12. Barata TJE, Bresciani E, Mattos MCR, Lauris JRP, Ericson D, Navarro MFL (2008) Comparasion of two minimally invasive methods on the longevity of glass ionomer cement restorations: short-term results of a pilot study. J Appl Oral Sci 16:155–160. https://doi.org/10.1590/s1678-77572008000200014

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gao W, Peng D, Smales RJ, Yip KH (2003) Comparison of atraumatic restorative treatment and conventional restorative procedures in a hospital clinic: evaluation after 30 months. Quintessence Int 34(1):31–37

    PubMed  Google Scholar 

  14. Zambon J, Reynolds H, Slots J (1981) Black-pigmented Bacteroides spp. in the human oral cavity. Infect Immun 32(1):198–203. https://doi.org/10.1128/IAI.32.1.198-203.1981

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hall M, Cole C, Smith S, Fuller R, Rolles C (1990) Factors influencing the presence of faecal lactobacilli in early infancy. Arch Dis Child 65(2):185–188. https://doi.org/10.1136/adc.65.2.185

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gold OG, Jordan HV, Van Houte J (1973) A selective medium for Streptococcus mutans. Arch Oral Biol 18(11):1357–1364. https://doi.org/10.1016/0003-9969(73)90109-x

    Article  PubMed  Google Scholar 

  17. Frencken J, Wolke J (2010) Clinical and SEM assessment of ART high-viscosity glass-ionomer sealants after 8–13 years in 4 teeth. J Dent 38(1):59–64. https://doi.org/10.1016/j.jdent.2009.09.004

    Article  PubMed  Google Scholar 

  18. Ersin NK, Uzel A, Aykut A, Candan U, Eronat C (2006) Inhibition of cultivable bacteria by chlorhexidine treatment of dentin lesions treated with the ART technique. Caries Res 40(2):172–177. https://doi.org/10.1159/000091120

    Article  PubMed  Google Scholar 

  19. Roberson TM, Lundeen TF (2006) Cariology: The lesion, etiology, prevention and control. In: Roberson TM, Heymann HO, Swift EJ (eds) Sturdevant's art and science of operative dentistry, 5th edn. Mosby, St. Louis, pp 67–134

    Google Scholar 

  20. Fejerskov O, Nyvad B, Kidd EAM (2003) Clinical and histological manifestations of dental caries. In: Fejerskov O, Kidd E (ed) Dental caries: The disease and its clinical management. Blackwell Munksgaard, pp 71–96

  21. Santiago B, Ventin D, Primo L, Barcelos R (2005) Microhardness of dentine underlying ART restorations in primary molars: an in vivo pilot study. Br Dent J 199(2):103–106. https://doi.org/10.1038/sj.bdj.4812525

    Article  PubMed  Google Scholar 

  22. Ngo HC, Mount G, Mc Intyre J, Tuisuva J, Von Doussa R (2006) Chemical exchange between glass-ionomer restorations and residual carious dentine in permanent molars: an in vivo study. J Dent 34(8):608–613. https://doi.org/10.1016/j.jdent.2005.12.012

    Article  PubMed  Google Scholar 

  23. Wambier DS, Dos Santos FA, Guedes-Pinto AC, Jaeger RG, Simionato MRL (2007) Ultrastructural and microbiological analysis of the dentin layers affected by caries lesions in primary molars treated by minimal intervention. Pediatr Dent 29(3):228–234

    PubMed  Google Scholar 

  24. Bjørndal L, Larsen T, Thylstrup A (1997) A clinical and microbiological study of deep carious lesions during stepwise excavation using long treatment intervals. Caries Res 31(6):411–417

    Article  Google Scholar 

  25. Maltz M, de Oliveira EF, Fontanella V, Bianchi R (2002) A clinical, microbiologic, and radiographic study of deep caries lesions after incomplete caries removal. Quintessence Int 33(2):151–159

  26. Tanzer JM, Livingston J, Thompson AM (2001) The microbiology of primary dental caries in humans. J Dent Educ 65(10):1028–1037. https://doi.org/10.1002/j.0022-0337.2001.65.10.tb03446.x

    Article  PubMed  Google Scholar 

  27. Orhan AI, Oz FT, Ozcelik B, Orhan K (2008) A clinical and microbiological comparative study of deep carious lesion treatment in deciduous and young permanent molars. Clin Oral Investig 12(4):369–378. https://doi.org/10.1007/s00784-008-0208-6

    Article  PubMed  Google Scholar 

  28. Rupf S, Hannig M, Breitung K, Schellenberger W, Eschrich K, Remmerbach T, Kneist S (2008) Phenotypic heterogeneity of Streptococcus mutans in dentin. J Dent Res 87(12):1172–1176. https://doi.org/10.1177/154405910808701203

    Article  PubMed  Google Scholar 

  29. Takahashi N, Nyvad B (2008) Caries ecology revisited: microbial dynamics and the caries process. Caries Res 42(6):409–418. https://doi.org/10.1159/000159604

    Article  PubMed  Google Scholar 

  30. Weerheijm K, De Soet J, Van Amerongen W, De Graaff J (1993) The effect of glass-ionomer cement on carious dentine: an in vivo study. Caries Res 27(5):417–423. https://doi.org/10.1159/000261573

    Article  PubMed  Google Scholar 

  31. Weerheijm K, Kreulen C, De Soet J, Groen H, Van Amerongen W (1999) Bacterial counts in carious dentine under restorations: 2–year in vivo effects. Caries Res 33(2):130–134. https://doi.org/10.1159/000016506

    Article  PubMed  Google Scholar 

  32. Palma-Dibb RG, de Castro CG, Ramos RP, Chimello DT, Chinelatti MA (2003) Bond strength of glass-ionomer cements to caries-affected dentin. J Adhes Dent 5(1):57–62

    PubMed  Google Scholar 

  33. Wadenya R, Yego C, Mante F (2010) Marginal microleakage of alternative restorative treatment and conventional glass ionomer restorations in extracted primary molars. J Dent Child 77(1):32–35

    Google Scholar 

  34. Bjørndal L, Larsen T (2000) Changes in the cultivable flora in deep carious lesions following a stepwise excavation procedure. Caries Res 34(6):502–508

    Article  Google Scholar 

  35. Bönecker M, Toi C, Cleaton-Jones P (2003) Mutans streptococci and lactobacilli in carious dentine before and after Atraumatic Restorative Treatment. J Dent 31(6):423–428. https://doi.org/10.1016/S0300-5712(03)00065-4

    Article  PubMed  Google Scholar 

  36. Kneist S, Schmidt F, Callaway A, Willershausen B, Rupf S, Wicht M, Thiede B (2010) Diversity of Lactobacillus species in deep carious lesions of primary molars. Eur Arch Paediatr Dent 11(4):181–186. https://doi.org/10.1007/BF03262741

    Article  PubMed  Google Scholar 

  37. Takahashi Y, Imazato S, Kaneshiro AV, Ebisu S, Frencken JE, Tay FR (2006) Antibacterial effects and physical properties of glass-ionomer cements containing chlorhexidine for the ART approach. Dent Mater 22(7):647–652. https://doi.org/10.1016/j.dental.2005.08.003

    Article  PubMed  Google Scholar 

  38. Türkün LŞ, Türkün M, Ertuğrul F, Ates M, Brugger S (2008) Long-term antibacterial effects and physical properties of a chlorhexidine-containing glass ionomer cement. J Esthet Restor Dent 20(1):29–44. https://doi.org/10.1111/j.1708-8240.2008.00146.x

    Article  PubMed  Google Scholar 

  39. Yesilyurt C, Er K, Tasdemir T, Buruk K, Celik D (2009) Antibacterial activity and physical properties of glass-ionomer cements containing antibiotics. Oper Dent 34(1):18–23. https://doi.org/10.2341/08-30

    Article  PubMed  Google Scholar 

  40. Tüzüner T, Kuşgöz A, Er K, Taşdemİr T, Buruk K, Kemer B (2011) Antibacterial activity and physical properties of conventional glass-ionomer cements containing chlorhexidine diacetate/cetrimide mixtures. J Esthet Restor Dent 23(1):46–55. https://doi.org/10.1111/j.1708-8240.2010.00385.x

    Article  PubMed  Google Scholar 

  41. Da Silva RC, Zuanon ACC, Spolidorio DMP, Campos JADB (2007) Antibacterial activity of four glass ionomer cements used in atraumatic restorative treatment. J Mater Sci Mater Med 18(9):1859–1862. https://doi.org/10.1007/s10856-007-3035-4

    Article  PubMed  Google Scholar 

  42. Shashibhushan K, Basappa N, Reddy VS (2008) Comparison of antibacterial activity of three fluorides-and zinc-releasing commercial glass ionomer cements on strains of mutans streptococci: an in vitro study. J Indian Soc Pedod Prev Dent 26(6):56

    Google Scholar 

  43. Kumari PD, Khijmatgar S, Chowdhury A, Lynch E, Chowdhury CR (2019) Factors influencing fluoride release in atraumatic restorative treatment (ART) materials: a review. J Oral Biol Craniofac Res 9(4):315–320. https://doi.org/10.1016/j.jobcr.2019.06.015

    Article  PubMed  PubMed Central  Google Scholar 

  44. de Amorim RG, Frencken JE, Raggio DP, Chen X, Hu X, Leal SC (2018) Survival percentages of atraumatic restorative treatment (ART) restorations and sealants in posterior teeth: an updated systematic review and meta-analysis. Clin Oral Investig 22(8):2703–2725. https://doi.org/10.1007/s00784-018-2625-5

    Article  PubMed  Google Scholar 

  45. Leal S, Bonifacio C, Raggio D, Frencken J (2018) Atraumatic restorative treatment: restorative component. Monogr Oral Sci 27:92–102. https://doi.org/10.1159/000487836

    Article  PubMed  Google Scholar 

  46. Wadenya R, Mante F (2007) An in vitro comparison of marginal microleakage of alternative restorative treatment and conventional glass ionomer restorations in extracted permanent molars. Pediatr Dent 29(4):303–307

    PubMed  Google Scholar 

  47. Heintze SD (2013) Clinical relevance of tests on bond strength, microleakage and marginal adaptation. Dent Mater 29(1):59–84. https://doi.org/10.1016/j.dental.2012.07.158

    Article  PubMed  Google Scholar 

  48. da Mata C, Allen PF, Cronin M, O'Mahony D, McKenna G, Woods N (2014) Cost-effectiveness of ART restorations in elderly adults: a randomized clinical trial. Community Dent Oral Epidemiol 42(1):79–87. https://doi.org/10.1111/cdoe.12066

    Article  PubMed  Google Scholar 

  49. Gil-Montoya J, Mateos-Palacios R, Bravo M, González-Moles M, Pulgar R (2014) Atraumatic restorative treatment and Carisolv use for root caries in the elderly: 2-year follow-up randomized clinical trial. Clin Oral Investig 18(4):1089–1095. https://doi.org/10.1007/s00784-013-1087-z

    Article  PubMed  Google Scholar 

  50. Dorri M, Martinez-Zapata MJ, Walsh T, Marinho VCC, Sheiham A, Zaror C (2017) Atraumatic restorative treatment versus conventional restorative treatment for managing dental caries. Cochrane Database Syst Rev 12. https://doi.org/10.1002/14651858.CD008072.pub2

  51. da Mata C, McKenna G, Anweigi L, Hayes M, Cronin M, Woods N, O’Mahony D, Allen PF (2019) An RCT of atraumatic restorative treatment for older adults: 5 year results. J Dent 83:95–99. https://doi.org/10.1016/j.jdent.2019.03.003

    Article  PubMed  Google Scholar 

  52. Mendes da Silva C, Figueiredo MC, Casagrande L, Larissa Lenzi T (2020) Survival and associated risk factors of atraumatic restorative treatment restorations in children with early childhood caries. J Dent Child 87(1):12–17

    Google Scholar 

  53. Faustino-Silva DD, Figueiredo MC (2019) Atraumatic restorative treatment-ART in early childhood caries in babies: 4 years of randomized clinical trial. Clin Oral Investig 23(10):3721–3729. https://doi.org/10.1007/s00784-019-02800-8

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Dr. Guven Kulekci, Department of Oral Microbiology, Faculty of Dentistry, Istanbul University, Istanbul, Turkey, for comments to the microbiological data.

Funding

The work was supported by the Research Fund of Istanbul University, Istanbul, Turkey with Grant number 1432.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meltem Tekbas Atay.

Ethics declarations

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards by the Local Ethics Committee, Faculty of Medicine, Istanbul University (ID: 2007/808) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tekbas Atay, M., Koray, F. Microbiological and SEM assessment of atraumatic restorative treatment in adult dentition. Clin Oral Invest 25, 6871–6880 (2021). https://doi.org/10.1007/s00784-021-03976-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-021-03976-8

Keywords

Navigation