Skip to main content
Log in

Trends in Arctic seasonal and extreme precipitation in recent decades

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Daily precipitation data from the European Centre for Medium-Range Weather Forecasts (ERA-Interim) from 1979 to 2016 are analyzed to determine the trends in seasonal and extreme precipitation across the pan-Arctic and estimate the contributions to the trends from the dynamic (e.g., changes in circulation patterns) and thermodynamic processes (e.g., sea ice melt–water vapor feedback) and their interactions. The trends in the seasonal total precipitation are generally consistent with the trends in the occurrence of seasonal extreme precipitation. Although the trends vary considerably in direction and magnitude across the pan-Arctic and the seasons, more regions experience a statistically significant positive trend than negative trend, particularly in autumn and winter seasons and over areas of the Arctic Ocean and the northern North Atlantic. Statistically significant negative trends are mostly found in areas of northern Eurasian and North America. The thermodynamic processes account for more than 85% of the total trends, with the rest of the trends explained by the dynamic processes (e.g., changes in circulation patterns) and the interaction between dynamic and thermodynamic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Availability of data and material

Daily atmospheric variables are provided by the European Centre for Medium Range Weather Forecasts (ECMWF) Interim ReAnalysis (ERA-Interim) (https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim).

Code availability

The Matlab code used in this paper is available as long as authors are contacted.

References

  • Anderson BT, Feldl N, Lintner BR (2018) Emergent behavior of Arctic precipitation in response to enhanced Warming. J Geophys Res Atmos 123:2704–2717

    Article  Google Scholar 

  • Auger JD, Birkel SD, Maasch KA, Mayewski PA, Schuenemann KC (2017) Examination of precipitation variability in southern Greenland. J Geophys Res Atmos 122:6202–6216

    Article  Google Scholar 

  • Barnston AG, Livezey RE (1987) Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon Wea Rev 115:1083–1126

    Article  Google Scholar 

  • Barrett AP, Stroeve JC, Serreze MC. (2020) Arctic Ocean precipitation from atmospheric reanalyses and comparisons with north pole drifting station records. J. Geophys. Res.: Oceans, 125: e2019JC015415.

  • Barry RG, Serreze MC (2000) Atmospheric components of the Arctic Ocean freshwater balance and their interannual variability. In: Lewis EL et al (eds) The Freshwater Budget of the Arctic Ocean. Springer, New York, pp 45–56

    Chapter  Google Scholar 

  • Behrangi A, Lebsock M, Wong S, Lambrigtsen B (2012) On the quantification of oceanic rainfall using space borne sensors. J Geophys Res 117:D20105

    Google Scholar 

  • Behrangi A, Christensen M, Richardson M, Lebsock M, Stephens G, Huffman GJ, Bolvin D, Adler RF, Gardner A, Lambrigtsen B, Fetzer E (2016) Status of high-latitude precipitation estimates from observations and reanalyses. J Geophys Res Atmos 121:4468–4486

    Article  Google Scholar 

  • Bengtsson L, Hodges K, Koumoutsaris S, Zahn M, Keenlyside N (2011) The changing atmospheric water cycle in polar regions in a warmer climate. Tellus 63A:907–920

    Article  Google Scholar 

  • Bintanja R, Selten F (2014) Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat. Nature 509:479–482

    Article  Google Scholar 

  • Boisvert LN, Stroeve JC (2015) The Arctic is becoming warmer and wetter as revealed by the Atmospheric Infrared Sounder. Geophys Res Lett 42:4439–4446

    Article  Google Scholar 

  • Boisvert LN, Webster MA, Petty AA, Markus T, Bromwich DH, Cullather DH (2018) Intercomparison of precipitation estimates over the Arctic Ocean and its peripheral seas. J Climate 31:8441–8462

    Article  Google Scholar 

  • Cai M (2005) Dynamic amplification of polar warming. Geophys Res Lett 32:L22710

    Google Scholar 

  • Cassano JJ, Uotila P, Lynch AH, Cassano EN (2007) Predicted changes in synoptic forcing of net precipitation in large Arctic river basins during the 21st century. J Geophys Res 112:G04S49

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Drgani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park B-K, Peubey C, de Rosnay P, Tavolato C, Thépaut J-N, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart J Roy Meteor Soc 137:553–597

    Article  Google Scholar 

  • Deser C, Tomas RA, Sun L (2015) The role of ocean-atmosphere coupling in the zonal-mean atmospheric response to Arctic sea ice loss. J Climate 28:2168–2186

    Article  Google Scholar 

  • Ding Q, Schweiger AJB, L’Heureux ML, Battisti DS, Johnson NC, Blanchard-Wrigglesworth E, Zhang Q, Harnos K, Eastman RM, Steig EJ (2017) Influence of high-latitude atmospheric circulation changes onsummertime Arctic sea ice. Nat Climate Change 7:289–295

    Article  Google Scholar 

  • Fearon MG, Doyle JD, Ryglicki DR, Finocchio PM, Sprenger M (2020) The role of cyclones in moisture transport into the Arctic. Geophys Res Lett doi:https://doi.org/10.1029/2020GL090353

  • Ghatak D, Deser C, Frei A, Gong G, Phillips A, Robinson DA, Stroeve J (2012) Simulated Siberian snow cover response to observed Arctic sea ice loss. 1979–2008. J Geophys Res 117:D23108

  • Gibson PB, Perkins-Kirkpatrick SE, Uotila P, Pepler AS, Alexander LV (2017) On the use of self-organizing maps for studying climate extremes. J Geophys Res Atmos 122:3891–3903

    Article  Google Scholar 

  • Glisan JM, Gutowksi WJ Jr (2014a) WRF winter extreme daily precipitation over the North American CORDEX Arctic. J Geophys Res Atmos 119:10738–10748

    Article  Google Scholar 

  • Glisan JM, Gutowksi WJ Jr (2014b) WRF summer extreme daily precipitation over the CORDEX Arctic. J Geophys Res Atmos 119:1720–1732

    Article  Google Scholar 

  • Glisan JM, Gutowski WJ Jr, Cassano JJ, Cassano EN, Seefeldt MW (2016) Analysis of WRF extreme daily precipitation over Alaska using self-organizing maps. J Geophys Res Atmos 121:7746–7761

    Article  Google Scholar 

  • Groves DG, Francis JA (2002) Moisture hudget of the Arctic atmosphere from TOV satellite data. J Geophys Res 107:4391

    Article  Google Scholar 

  • Hakuba MZ, Folini D, Wild M, Schär C (2012) Impact of Greenland’s topographic height on precipitation and snow accumulation in idealized simulations. J Geophys Res 117:D09107

    Google Scholar 

  • Hanssen-Bauer I, Førland EJ (1998) Long-Term Trends in precipitation and pemperature in the Norwegian Arctic: Can They Be Explained by Changes in Atmospheric Circulation Patterns? Clim Res 10:143–153

    Article  Google Scholar 

  • Hegyi BM, Deng Y (2011) A dynamical fingerprint of tropical Pacific sea surface temperature on the decadal-scale variability of cool-season Arctic precipitation. J Geophys Res 116:D20121

    Article  Google Scholar 

  • Heikkilä U, Sorteberg A (2012) Characteristics of autumn-winter extreme precipitation on the Norwegian west coast identified by cluster analysis. Clim Dyn 39:929–939

    Article  Google Scholar 

  • Held I, Soden B (2006) Robust response of the hydrological cycle to global warming. J Climate 19:5686–5699

    Article  Google Scholar 

  • Henderson G, Peings Y, Furtado JC, Kushner PJ (2018) Snow-atmosphere coupling in the Northern Hemisphere. Nat Clim Chang 8:954–963

    Article  Google Scholar 

  • Holland MM, Barrett AP, Serreze MC (2007) Projected changes in Arctic ocean freshwater budgets. J Geophys Res 112:G04S55

    Google Scholar 

  • Higgins ME, Cassano JJ (2009) Impacts of reduced sea ice on winter Arctic atmospheric circulation, precipitation, and temperature. J Geophys Res 114:D16107

    Article  Google Scholar 

  • Hwang Y-T, Frierson D (2010) Increasing atmospheric poleward energy with global warming. Geophys Res Lett 37:L24807

    Google Scholar 

  • Kane DL, McNamara JP, Yang D, Olsson PQ, Gieck RE (2003) An extreme rainfall/runoff event in Arctic Alaska. J Hydrometeorology 4:1220–1228

    Article  Google Scholar 

  • Kattsov VM, Walsh JE (2000) Twentieth-century trends of Arctic precipitation from observational data and a climate model simulation. J Climate 13:1362–1370

    Article  Google Scholar 

  • Kattsov VM, Walsh JE, Chapman WL, Govorkova VA, Pavlova TV, Zhang X (2007) Simulation and projection of Arctic freshwater budget components by the IPCC AR4 global climate models. J Climate 8:571–589

    Google Scholar 

  • Khon VC, Mokhov II, Roeckner E, Semenov VA (2007) Regional changes of precipitation characteristics in Northern Eurasia from simulations with global climate model. Global Planet Change 57:118–123

    Article  Google Scholar 

  • Kohonen T (2001) Self-Organizing Maps. 3rd ed. Springer, 501 pp

  • Kopec BG, Feng X, Michel FA, Posmentier ES (2016) Influence of sea ice on Arctic precipitation. Proc Natl Acad Sci USA 113:46–51

    Article  Google Scholar 

  • Lader R, Bhatt US, Walsh JE, Rupp TS, Bieniek PA (2016) Two-meter temperature and precipitation from atmospheric reanalysis evaluated for Alaska. J Appl Meteorol Clim 55:901–922

    Article  Google Scholar 

  • Lee S, Feldstein SB (2013) Detecting ozone- and greenhouse gas–driven wind trends with observational data. Science 339:563–567

    Article  Google Scholar 

  • Legates D, Willmott C (1990) Mean seasonal and spatial variability in gauge-corrected global precipitation. Int J Climatol 10:111–127

    Article  Google Scholar 

  • Lindsay R, Wensnahan M, Schweiger A, Zhang J (2014) Evaluation of seven different atmospheric reanalysis products in the Arctic. J Climate 27:2588–2606

    Article  Google Scholar 

  • Lique C, Holland MM, Dibike YB, Lawrence DM, Screen JA (2016) Modeling the Arctic freshwater system and its integration in the global system: Lessons learned and futurechallenges. J Geophys Res Biogeosci 121:540–566

    Article  Google Scholar 

  • Liston GE, Hiemstra CA (2011) The changing crosphere: Pan-Arctic snow trends. J Climate 24:5691–5712

    Article  Google Scholar 

  • McAfee SA, Guentchev G, Eischeid JK (2013) Reconciling precipitation trends in Alaska: 1. Station based analyses. J Geophys Res Atmos 118:7523–7541

    Article  Google Scholar 

  • McAfee S, Guentchev G, Eischeid J (2014) Reconciling precipitation trends in Alaska: 2. Gridded data analyses. J Geophys Res Atmos 119:13820–13837

    Article  Google Scholar 

  • Meehl GA, Arblaster JM, Tebaldi C (2005) Understanding future patterns of increased precipitation intensity in climate model simulations. Geophys Res Lett 32:L18719

    Article  Google Scholar 

  • Min S-K, Zhang X, Zwiers F (2008) Human-induced Arctic moistening. Science 320:518–520

    Article  Google Scholar 

  • Mioduszewski JR, Rennermalm AK, Hammann A, Tedesco M, Noble EU, Stroeve JC, Mote TL (2016) Atmospheric drivers of Greenland surface melt revealed by self-organizing maps. J Geophys Res Atmos 121:5095–5114

    Article  Google Scholar 

  • Park H, Walsh JE, Kim Y, Nakai T, Ohata T (2013) The role of declining Arctic sea ice in recent decreasing terrestrial Arctic snow depths. Polar Sci 7:174–187

    Article  Google Scholar 

  • Reusch DB, Alley RB, Hewitson BC (2005) Relative performance of self-organizing maps and principal component analysis in pattern extraction from synthetic climatological data. Polar Geogr 29:188–212

    Article  Google Scholar 

  • Rignot E, Thomas RH (2002) Mass Balance of polar ice sheets. Science 297:1502–1506

    Article  Google Scholar 

  • Rinke A, Segger B, Crewell S, Maturilli M, Naakka T, Nygård T, Vihma T, Alshawaf F, Dick G, Wickert J, Keller J (2019) Trends of vertically integrated water vapor over the Arctic during 1979–2016: Consistent moistening all over? J. Climate 6097–6116

  • Saha SK, Rinke A, Dethloff K (2006) Future winter extreme temperature and precipitation events in the Arctic. Geophys Res Lett 33:L15818

    Article  Google Scholar 

  • Sammon J (1969) A non-linear mappings for data structure and analyses. IEEE Trans Comput 18:401–409

    Article  Google Scholar 

  • Schuenemann KC, Cassano JJ, Finnis J (2009) Synoptic forcing of precipitation over Greenland: Climatology for 1961–1999. J Hydrometeorol 10:60–78

    Article  Google Scholar 

  • Screen JA, Simmonds I (2012) Declining summer snowfall in the Arctic: Causes, impacts and feedbacks. Clim Dyn 38:2243–2256

    Article  Google Scholar 

  • Serreze MC, Hurst CM (2000) Representation of mean Arctic precipitation from NCEP-NCAR and ERA reanalyses. J Climate 13:182–201

    Article  Google Scholar 

  • Serreze MC, Crawford AD, Barrett AP (2015) Extreme daily precipitation events at Spitsbergen, an Arctic Island. Int J Climatol 35:4574–4588

    Article  Google Scholar 

  • Serreze MC, Barrett AP, Lo F (2005) Northern high-latitude precipitation as depicted by atmospheric reanalyses and satellite retrievals. Mon Wea Rev 133:3407–3430

    Article  Google Scholar 

  • Serreze, M., and R. G. Barry, 2005: The Arctic Climate System. Cambridge University Press, 385pp.

  • Serreze MC, Barry RG (2011) Processes and impacts of Arctic amplification: a research synthesis. Global Planet Change 77:85–96

    Article  Google Scholar 

  • Stroeve JC, Serreze MC, Barrett A, Kindig DN (2011) Attribution of recent changes in autumn cyclone associated precipitation in the Arctic. Tellus 63A:653–663

    Article  Google Scholar 

  • Singh HKA, Bitz CM, Donohoe A, Rasch PJ (2017) A source-receptor perspective on the polar hydrologic cycle: Sources, seasonality, and Arctic-Antarctic parity in the hydrologic cycle response to CO2 doubling. J Climate 30:9999–10017

    Article  Google Scholar 

  • Skific N, Francis J, Cassano J (2009a) Attribution of projected changes in atmospheric moisture transport in the Arctic: A self-organizing map perspective. J Climate 22:4135–4153

    Article  Google Scholar 

  • Skific N, Francis J, Cassano J (2009b) Attribution of seasonal and regional changes in Arctic moisture convergence. J Climate 22:5115–5134

    Article  Google Scholar 

  • Stephens GL, L’Ecuyer T, Forbes R, Gettlemen A, Golaz J-C, Bodas-Salcedo A, Suzuki K, Gabriel P, Haynes J (2010) Dreary state of precipitation in global models. J Geophys Res 115:D24211

    Google Scholar 

  • Stroeve JC, Serreze MC, Holland MM, Kay JE, Malanik J, Barrett AP (2012) The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Clim Change 110:1005–1027

    Article  Google Scholar 

  • Trenberth KE (2011) Change in precipitation with climate change. Clim Res 47:123–138

    Article  Google Scholar 

  • Vavrus SJ, Holland MM, Jahn A, Bailey DA, Blazey BA (2012) Twenty-first-century Arctic climate change in CCSM4. J Climate 25:2696–2710

    Article  Google Scholar 

  • Vihma T, Screen J, Tjernström M, Newton B, Zhang X, Popova V, Deser C, Holland M, Prowse T (2016) The atmospheric role in the Arctic water cycle: A review on processes, past and future changes, and their impacts. J Geophys Res Biogeosci 121:586–620

    Article  Google Scholar 

  • Villamil-Otero GA, Zhang J, He J, Zhang X (2018) Role of extratropical cyclones in the recently observed increase in poleward moisture transport into the Arctic Ocean. Adv Atmos Sci 35:85–94

    Article  Google Scholar 

  • Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon Wea Rev 109:784–812

    Article  Google Scholar 

  • Walsh JE, Kattsov V, Portis D, Meleshko V (1998) Arctic Precipitation andEvaporation: Model Results and Observational Estimates. J Climate 11:72–87

    Article  Google Scholar 

  • Wang J, Zhang J, Watanabe E, Ikeda M, Mizobata K, Walsh JE, Bai X, Wu B (2009) Is the Dipole Anomaly a major driver to record lows in Arctic summer sea ice extent? Geophys Res Lett 36:L05706

    Google Scholar 

  • Wu Q, ZhangZhang , Tao JXW (2014) Interannual variability and long-term changes of atmospheric circulation over the Chukchi and Beaufort Seas. J Climate 27:4871–4889

    Article  Google Scholar 

  • Yang D (1999) An improved precipitation climatology for the Arctic Ocean. Geophys Res Lett 26:1625–1628

    Article  Google Scholar 

  • Zahn M, Akperov M, Rinke A, Feser F, Mokhov II (2018) Trends of cyclone characteristics in the Arctic and their patterns fro mdifferent reanalysis data. J Geophys Res 123:2737–2751

    Article  Google Scholar 

  • Zhang X, He J, Zhang J, Polyakov I, Gerdes R, Inoue J, Wu P (2013) Enhanced Poleward Atmospheric Moisture Transport Amplified Northern High-Latitude Wetting Trend. Nat Clim Chang 3:47–51

    Article  Google Scholar 

Download references

Acknowledgements

We thank the European Centre for Medium-Range Weather Forecasts (ECMWF) for the ERA-Interim data. This study is supported by the National Key R&D Program of China (2019YFC1509103; 2017YFE0111700), and the National Natural Science Foundation of China (41922044). We also acknowledge the help from the two anonymous reviewers in improving the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Lejiang Yu designed the research, analyzed the data, and wrote the first draft of the paper. Shiyuan Zhong revised the first draft and provided useful insights during various stages of the work.

Corresponding author

Correspondence to Lejiang Yu.

Ethics declarations

Ethics approval

Ethics approval is not required for this study.

Consent to participate

Consent to participate is not required for this study.

Consent for publication

Consent for publication is not required for this study.

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, L., Zhong, S. Trends in Arctic seasonal and extreme precipitation in recent decades. Theor Appl Climatol 145, 1541–1559 (2021). https://doi.org/10.1007/s00704-021-03717-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-021-03717-7

Navigation