Skip to main content
Log in

Observed response of precipitation intensity to dew point temperature over the contiguous US

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Precipitation has an important impact on crop growth, water resources, industrial/agricultural production, and ecological services. Compared to widely used precipitation amount, intensity of precipitation is more important because it determines the partition of precipitation into soil moisture and surface runoff. With hourly precipitation observations collected at 307 stations over the contiguous US from 1984 to 2013, this study investigates the sensitivity of precipitation intensity to warming. To deal with the issues of constant relative humidity assumption in the existing studies, the sensitivities of hourly precipitation intensity at various percentiles to dew point temperature are examined. We find that the results with dew point temperature showed more consistent and robust positive sensitivities than that of air temperature. The sensitivity of precipitation intensity to warming of dew point temperature increases from ~2%/°C for the 50th percentile of precipitation to ~6%/°C for the 99th percentile of precipitation. These sensitivities are the largest in the Southwest region, followed by the Great Lakes and Plains, the Pacific Coast, and the West region. Such spatial contrast is the largest in summer. The results can provide a comprehensive and quantitative documentation of the precipitation sensitivity to warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason B, Tank AMGK, Haylock M, Collins D, Trewin B, Rahimzadeh F, Tagipour A, Kumar KR, Revadekar J, Griffiths G, Vincent L, Stephenson DB, Burn J, Aguilar E, Brunet M, Taylor M, New M, Zhai P, Rusticucci M, Vazquez-Aguirre JL (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res-Atmos 111:1042–1063

    Article  Google Scholar 

  • Ali H, Mishra V (2017) Contrasting response of rainfall extremes to increase in surface air and dewpoint temperatures at urban locations in India. Sci Rep 7(1):1228

    Article  Google Scholar 

  • Ali H, Fowler HJ, Mishra V (2018) Global Observational Evidence of Strong Linkage Between Dew Point Temperature and Precipitation Extremes. Geophys Res Lett 45(22):12320–12330

    Article  Google Scholar 

  • Allan RP, Soden BJ (2008) Atmospheric Warming and the Amplification of Precipitation Extremes. Science 321:1481–1484

    Article  Google Scholar 

  • Allan RP, Zveryaev II (2011) Variability in the summer season hydrological cycle over the Atlantic-Europe region 1979-2007. Int J Climatol 31:337–348

    Article  Google Scholar 

  • Allan RP, Soden BJ, John VO, Ingram W, Good P (2010) Current changes in tropical precipitation. Environ Res Lett 5:302–307

    Article  Google Scholar 

  • Allen MR, Ingram WJ (2002) Constraints on future changes in climate and the hydrologic cycle. Nature 419:224–232

    Article  Google Scholar 

  • Andreadis KM, Lettenmaier DP (2006) Trends in 20th century drought over the continental United States. Geophys Res Lett 33:L10403

    Article  Google Scholar 

  • Apurv T, Cai XM, Yuan X (2019) Influence of Internal Variability and Global Warming on Multidecadal Changes in Regional Drought Severity over the Continental United States. J Hydrometeorol 20(3):411–429

    Article  Google Scholar 

  • Aristita B, Marius-Victor B, Daniel C, Madalina B (2016) Changes in the large-scale thermodynamic instability and connection with rain shower frequency over Romania: verification of the Clausius-Clapeyron scaling. Int J Climatol 36:2015–2034

    Article  Google Scholar 

  • Back L, Russ K, Liu Z, Inoue K, Zhang J, Otto-Bliesner B (2013) Global hydrological cycle response to rapid and slow global warming. J Clim 26:8781–8786

    Article  Google Scholar 

  • Barbero R, Fowler HJ, Lenderink G, Blenkinsop S (2017) Is the intensification of precipitation extremes with global warming better detected at hourly than daily resolutions? Geophys Res Lett 44:974–983

    Article  Google Scholar 

  • Barbero R, Westra S, Lenderinkd G, Fowler HJ (2018) Temperature-extreme precipitation scaling: a two-way causality ? Int J Climatol 38:1274–1279

    Article  Google Scholar 

  • Beranova R, Kysely J, Hanel M (2018) Characteristics of sub-daily precipitation extremes in observed data and regional climate model simulations. Theor Appl Climatol 132(1-2):515–527

    Article  Google Scholar 

  • Berg P, Haerter JO (2013) Unexpected increase in precipitation intensity with temperature-A result of mixing of precipitation types? Atmos Res 119:56–61

    Article  Google Scholar 

  • Berg P, Haerter JO, Thejll P, Piani C, Hagemann S, Christensen JH, (2009) Seasonal characteristics of the relationship between daily precipitation intensity and surface temperature. J Geophys Res-Atmos 114:D18102

  • Berg P, Moseley C, Haerter JO (2013) Strong increase in convective precipitation in response to higher temperatures. Nat Geosci 6:181–185

    Article  Google Scholar 

  • Blenkinsop S, Fowler HJ, Barbero R, Chan SC, Guerreiro SB, Kendon E, Lenderink G, Lewis E, Li XF, Westra S, Alexander L, Allan RP, Berg P, Dunn RJH, Ekstrom M, Evans JP, Holland G, Jones R, Kjellstrom E, Klein-Tank A, Lettenmaier D, Mishra V, Prein AF, Sheffield J, Tye MR (2018) The INTENSE project: using observations and models to understand the past. present and future of sub-daily rainfall extremes. Adv Sci Res 15:117–126

    Article  Google Scholar 

  • Bui A, Johnson F, Wasko C (2019) The relationship of atmospheric air temperature and dew point temperature to extreme rainfall. Environ Res Lett 14(7):074025

    Article  Google Scholar 

  • Chan SC, Kendon EJ, Roberts NM, Fowler HJ, Blenkinsop S (2016) Downturn in scaling of UK extreme rainfall with temperature for future hottest days. Nat Geosci 9(1):24

    Article  Google Scholar 

  • Dai A (2013) Increasing drought under global warming in observations and models. Nat Clim Chang 3:52–58

    Article  Google Scholar 

  • Dai A, Rasmussen RM, Liu C, Ikeda K, Prein AF (2017) A new mechanism for warm-season precipitation response to globalwarming based on convection-permitting simulations. Clim Dyn 48:1–26

    Google Scholar 

  • Daly C, Gibson WP, Taylor GH, Doggett MK, Smith JI (2007) Observer Bias in Daily Precipitation Measurements at United States Cooperative Network Stations. Bull Am Meteorol Soc 88:899–912

    Article  Google Scholar 

  • Donat MG, Lowry AL, Alexander LV, O'Gorman PA, Maher N (2016) More extreme precipitation in the world's dry and wet regions. Nat Clim Chang 6:508–513

    Article  Google Scholar 

  • Finkel JM, Canel-Katz LM, Katz JI (2016) Decreasing US aridity in a warming climate. Int J Climatol 36:1560–1564

    Article  Google Scholar 

  • Fischer EM, Knutti R (2016) Observed heavy precipitation increase confirms theory and early models. Nat Clim Chang 6:986–991

    Article  Google Scholar 

  • Formayer H, Fritz A (2017) Temperature dependency of hourly precipitation intensities-surface versus cloud layer temperature. Int J Climatol 37:1–10

    Article  Google Scholar 

  • Gao T, Wang HXJ, Zhou TJ (2017) Changes of extreme precipitation and nonlinear influence of climate variables over monsoon region in China. Atmos Res 197:379–389

    Article  Google Scholar 

  • Gherardi LA, Sala OE (2015) Enhanced precipitation variability decreases grass- and increases shrub-productivity. Proc Natl Acad Sci U S A 112:12735–12740

    Article  Google Scholar 

  • Gimeno L, Drumond A, Nieto R, Trigo RM, Stohl A (2010) On the origin of continental precipitation. Geophys Res Lett 37:L13804

    Article  Google Scholar 

  • Gimeno L, Stohl A, Trigo RM, Dominguez F, Yoshimura K, Yu L, Drumond A, Durán-Quesada AM, Nieto R (2012) Oceanic and terrestrial sources of continental precipitation. Rev Geophys 50(4):RG4003

    Article  Google Scholar 

  • Gimeno L, Nieto R, Drumond A, Castillo R, Trigo R (2013) Influence of the intensification of the major oceanic moisture sources on continental precipitation. Geophys Res Lett 40(7):1443–1450

    Article  Google Scholar 

  • Groisman PY, Loknaeva VV, Belokrylova TA, Karl TR (1991) Overcoming Biases of Precipitation Measurement: A History of the USSR Experience. Bull Am Meteorol Soc 72:1725–1733

    Article  Google Scholar 

  • Guerreiro SB, Fowler HJ, Barbero R, Westra S, Lenderink G, Blenkinsop S, Lewis E, Li XF (2018) Detection of continental-scale intensification of hourly rainfall extremes. Nat Clim Chang 8(9):803

    Article  Google Scholar 

  • Hammer GR, Reek T (1997) The Processing of Recording Rain Gage Data at the National Climatic Data Center, Proceedings of the 13th Conference on Hydrology. American Meteorological Society, Long Beach, California, pp. 223-226

  • Hammer GR, Steurer PM (1997) Data set documentation for Hourly Precipitation Data. In: N.N.T.D. Series (Editor), Asheville, NC, pp 18

  • Hardwick-Jones R, Westra S, Sharma A (2010) Observed relationships between extreme sub-daily precipitation, surface temperature, and relative humidity. Geophys Res Lett 37:22805

    Article  Google Scholar 

  • Hegerl GC, Black E, Allan RP, Ingram WJ, Polson D, Trenberth KE, Chadwick RS, Arkin PA, Sarojini BB, Becker A, Dai A, Durack PJ, Easterling D, Fowler HJ, Kendon EJ, Huffman GJ, Liu C, Marsh R, New M, Osborn TJ, Skliris N, Stott PA, Vidale P-L, Wijffels SE, Wilcox LJ, Willett KM, Zhang X (2014) Challenges in Quantifying Changes in the Global Water Cycle. Bull Am Meteorol Soc 96:1097–1115

    Article  Google Scholar 

  • Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19:5686–5699

    Article  Google Scholar 

  • Hirsch RM, Archfield SA (2015) Flood trends: Not higher but more often. Nat Clim Chang 5:198–199

    Article  Google Scholar 

  • Ivancic TJ, Shaw SB (2016) A U.S.-based analysis of the ability of the Clausius-Clapeyron relationship to explain changes in extreme rainfall with changing temperature. J Geophys Res-Atmos 121:3066–3078

    Article  Google Scholar 

  • Jiao Y, Yuan X (2019) More severe hydrological drought events emerge at different warming levels over the Wudinghe watershed in northern China. Hydrol Earth Syst Sci 23(1):621–635

    Article  Google Scholar 

  • Kharin VV, Zwiers FW, Zhang X, Hegerl GC (2007) Changes in Temperature and Precipitation Extremes in the IPCC Ensemble of Global Coupled Model Simulations. J Clim 20:1419–1444

    Article  Google Scholar 

  • Lenderink G, Attema J (2015) A simple scaling approach to produce climate scenarios of local precipitation extremes for the Netherlands. Environ Res Lett 10:085001

    Article  Google Scholar 

  • Lenderink G, Meijgaard EV (2008) Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat Geosci 1:511–514

    Article  Google Scholar 

  • Lenderink G, Meijgaard Ev (2010) Linking increases in hourly precipitation extremes to atmospheric temperature and moisture changes. Environ Res Lett 5:025208

    Article  Google Scholar 

  • Lenderink G, Barbero R, Loriaux JM, Fowler HJ (2017) Super-Clausius-Clapeyron Scaling of Extreme Hourly Convective Precipitation and Its Relation to Large-Scale Atmospheric Conditions. J Clim 30:6037–6052

    Article  Google Scholar 

  • Lepore C, Veneziano D, Molini A (2015) Temperature and CAPE dependence of rainfall extremes in the eastern United States. Geophys Res Lett 42(1):74–83

    Article  Google Scholar 

  • Lepore C, Allen JT, Tippett MK (2016) Relationships between Hourly Rainfall Intensity and Atmospheric Variables over the Contiguous United States. J Clim 29(9):3181–3197

    Article  Google Scholar 

  • Lochbihler K, Lenderink G, Siebesma AP (2017) The spatial extent of rainfall events and its relation to precipitation scaling. Geophys Res Lett 44(16):8629–8636

    Article  Google Scholar 

  • Loriaux J, Lenderink G, Siebesma AP (2016) Peak precipitation intensity in relation to atmospheric conditions and large-scale forcing at midlatitudes. J Geophys Res-Atmos 121(10):5471–5487

    Article  Google Scholar 

  • Mallakpour I, Villarini G (2015) The changing nature of flooding across the central United States. Nat Clim Chang 5:250–254

    Article  Google Scholar 

  • Mishra V, Wallace JM, Lettenmaier DP (2012) Relationship between hourly extreme precipitation and local air temperature in the United States. Geophys Res Lett 39:L16403

    Article  Google Scholar 

  • Nie J, Sobel AH, Shaevitz DA, Wang S (2018) Dynamic amplification of extreme precipitation sensitivity. Proc Natl Acad Sci U S A 115(38):9467–9472

    Article  Google Scholar 

  • Peleg N, Marra F, Fatichi S, Molnar P, Morin E, Sharma A, Burlando P (2018) Intensification of Convective Rain Cells at Warmer Temperatures Observed from High-Resolution Weather Radar Data. J Hydrometeorol 19(4):715–726

    Article  Google Scholar 

  • Pinskwar I, Chorynski A, Graczyk D, Kundzewicz ZW (2019) Observed changes in extreme precipitation in Poland: 1991-2015 versus 1961-1990. Theor Appl Climatol 135(1-2):773–787

    Article  Google Scholar 

  • Portmann RW, Solomon S, Hegerl GC, Held IM (2009) Spatial and Seasonal Patterns in Climate Change, Temperatures, and Precipitation acrossthe United States. Proc Natl Acad Sci U S A 106:7324–7329

    Article  Google Scholar 

  • Rai P, Choudhary A, Dimri AP (2019) Future precipitation extremes over India from the CORDEX-South Asia experiments. Theor Appl Climatol 137(3-4):2961–2975

    Article  Google Scholar 

  • Roderick ML, Sun F, Lim WH, Farquhar GD (2014) A general framework for understanding the response of the water cycle to global warming over land and ocean. Hydrol Earth Syst Sci 18(5):1575–1589

    Article  Google Scholar 

  • Scherrer SC, Posselt EMFR, Liniger MA, Croci-Maspoli M, Knutti R (2016) Emerging trends in heavy precipitation and hot temperature extremes in Switzerland. J Geophys Res-Atmos 121:2626–2637

    Article  Google Scholar 

  • Sharma PJ, Loliyana VD, Resmi SR, Timbadiya PV, Patel PL (2018) Spatiotemporal trends in extreme rainfall and temperature indices over Upper Tapi Basin, India. Theor Appl Climatol 134(3-4):1329–1354

    Article  Google Scholar 

  • Sun Y, Zhou TJ, Ramstein G, Contoux C, Zhang ZS (2016) Drivers and mechanisms for enhanced summer monsoon precipitation over East Asia during the mid-Pliocene in the IPSL-CM5A. Clim Dyn 46(5-6):1437–1457

    Article  Google Scholar 

  • Sun F, Roderick ML, Farquhar GD (2018) Rainfall statistics, stationarity, and climate change. Proc Natl Acad Sci U S A 115:2305–2310

    Article  Google Scholar 

  • Tang QH, Leng GY (2013) Changes in Cloud Cover, Precipitation, and Summer Temperature in North America from 1982 to 2009. J Clim 26(5):1733–1744

    Article  Google Scholar 

  • Tang Y, Tang QH, Wang ZG, Chiew FHS, Zhang XJ, Xiao H (2019) Different Precipitation Elasticity of Runoff for Precipitation Increase and Decrease at Watershed Scale. J Geophys Res-Atmos 124:1–12

    Article  Google Scholar 

  • Tian D, Wood EF, Yuan X (2017) CFSv2-based sub-seasonal precipitation and temperature forecast skill over the contiguous United States. Hydrol Earth Syst Sci 21(3):1477–1490

    Article  Google Scholar 

  • Tollerud EI, Govett MW, Steurer PM, Moninger WR (1997) New access and display routines for hourly precipitation data and metadata using CD ROMs and the World Wide Web, 105th Conf. on Applied Meteorology. American Meteorological Society, Reno, Nevada

  • Trenberth KE (2011) Changes in precipitation with climate change. Clim Res 47:123–138

    Article  Google Scholar 

  • Trenberth KE, Zhang Y (2018) How often does it really rain. Bull Am Meteorol Soc 99(2):289–298

    Article  Google Scholar 

  • Trenberth KE, Dai A, Rasmussen RM, Parsons DB (2003) The changing character of precipitation. Bull Am Meteorol Soc 84:1205–1217

    Article  Google Scholar 

  • Utsumi N, Seto S, Kanae S, Maeda EE, Oki T (2011) Does higher surface temperature intensify extreme precipitation? Geophys Res Lett 38:239–255

    Article  Google Scholar 

  • Wang H, Sun FB, Liu WB (2018) The Dependence of Daily and Hourly Precipitation Extremes on Temperature and Atmospheric Humidity over China. J Clim 31(21):8931–8944

    Article  Google Scholar 

  • Wasko C, Sharma A (2014) Quantile regression for investigating scaling of extreme precipitation with temperature. Water Resour Res 50:3608–3614

    Article  Google Scholar 

  • Wasko C, Sharma A (2015) Steeper temporal distribution of rain intensity at higher temperatures within Australian storms. Nat Geosci 8:527–529

    Article  Google Scholar 

  • Wasko C, Sharma A, Westra S (2016) Reduced spatial extent of extreme storms at higher temperatures. Geophys Res Lett 43(8):4026–4032

    Article  Google Scholar 

  • Wasko C, Lu WT, Mehrotra R (2018) Relationship of extreme precipitation, dry-bulb temperature, and dew point temperature across Australia. Environ Res Lett 13:074031

    Article  Google Scholar 

  • Wentz FJ, Ricciardulli L, Hilburn K, Mears C (2007) How Much More Rain Will Global Warming Bring? Science 317:233–235

    Article  Google Scholar 

  • Westra S, Alexander LV, Zwiers FW (2013) Global Increasing Trends in Annual Maximum Daily Precipitation. J Clim 26:3904–3918

    Article  Google Scholar 

  • Westra S, Fowler HJ, Evans JP, Alexander LV, Berg P, Johnson F, Kendon EJ, Lenderink G, Roberts NM (2014) Future changes to the intensity and frequency of short-duration extreme rainfall. Rev Geophys 52:522–555

    Article  Google Scholar 

  • Yin JB, Gentine P, Zhou S, Sullivan SC, Wang R, Zhang Y, Guo SL (2018) Large increase in global storm runoff extremes driven by climate and anthropogenic changes. Nat Commun 9:4389

    Article  Google Scholar 

  • Zhang WX, Zhou TJ (2019) Significant Increases in Extreme Precipitation and the Associations with Global Warming over the Global Land Monsoon Regions. J Clim 32(24):8465–8488

    Article  Google Scholar 

  • Zhang WX, Zhou TJ, Zou LW, Zhang LX, Chen XL (2018) Reduced exposure to extreme precipitation from 0.5 degrees C less warming in global land monsoon regions. Nat Commun 9:3153

  • Zheng FF, Westra S, Leonard M (2015) Opposing local precipitation extremes. Nat Clim Chang 5(5):389–390

    Article  Google Scholar 

  • Zhou T, Yu R, Chen H, Dai A, Pan Y (2008) Summer precipitation frequency, intensity, and diurnal cycle over China: A comparison of satellite data with rain gauge observations. J Clim 21:3997–4010

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2017YFA0603601), the National Program on Key Basic Research Project of China (2015CB953703), and the National Natural Science Foundation of China (41525018). The precipitation and temperature data used in this study are derived from the Hourly Precipitation and Global Summary of the Day (GSOD) data sets. Both of these data sets were obtained from the National Centers for Environmental Information (NCEI) of the National Oceanic and Atmospheric Administration (NOAA) (https://www.ncdc.noaa.gov/data-access).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaicun Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, G., Wang, K. Observed response of precipitation intensity to dew point temperature over the contiguous US. Theor Appl Climatol 144, 1349–1362 (2021). https://doi.org/10.1007/s00704-021-03602-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-021-03602-3

Navigation