Skip to main content
Log in

Carbon and water fluxes and their coupling in an alpine meadow ecosystem on the northeastern Tibetan Plateau

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Alpine meadow is one of the most widely distributed vegetation types on the Tibetan Plateau—the Earth’s Third Pole. Characterizing the carbon and water vapor fluxes in alpine meadow ecosystems is of particular importance for elucidating the mechanisms underlying the carbon budget and water cycle in high-altitude areas, especially under changing climatic conditions. Thus, the quantitative relationships between carbon and water fluxes and environmental drivers were examined based on a continuous eddy covariance (EC) dataset from 2013 to 2015 over the alpine Kobresia meadow on the northeastern Tibetan Plateau. The results show that (1) the net ecosystem CO2 exchange (NEE) was − 152.89 g C m−2 year−1, − 197.69 g C m−2 year−1, and − 160.09 g C m−2 year−1 from 2013 to 2015, respectively, suggesting that this alpine meadow ecosystem is a strong and consistent carbon sink. (2) Both the multiple stepwise regression analysis (MSRA) and the structural equation model (SEM) analysis confirmed the dominant role of Ts in controlling the carbon flux and that of Rn in controlling the water vapor flux. (3) The inherent water use efficiency (IWUE = GPP×VPD/ET) and underlying water use efficiency (uWUE = GPP×VPD0.5/ET), which incorporates the vapor pressure deficit (VPD) effect, better described the carbon-water coupling characteristics at daily and hourly scales than did the traditional water use efficiency (WUE = GPP/ET). These findings highlight the dominant climatic factors controlling CO2 and water vapor exchanges and contribute to our knowledge of the land surface-atmosphere exchange in alpine meadows on the Tibetan Plateau.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bai Y, Li X, Zhou S, Yang X, Yu K, Wang M, Liu S, Wang P, Wu X, Wang X, Zhang C, Shi F, Wang Y, Wu Y (2019) Quantifying plant transpiration and canopy conductance using eddy flux data: an underlying water use efficiency method. Agric For Meteorol 271:375–384

    Google Scholar 

  • Beer C et al (2009) Temporal and among-site variability of inherent water use efficiency at the ecosystem level. Glob Biogeochem Cycles 23(2):1–13

    Google Scholar 

  • Cao G, Tang Y, Mo W, Wang Y, Li Y, Zhao X (2004) Grazing intensity alters soil respiration in an alpine meadow on the Tibetan plateau. Soil Biol Biochem 36:237–243

    Google Scholar 

  • Carrillo-Rojas G, Silva B, Rollenbeck R, Célleri R, Bendix J (2019) The breathing of the Andean highlands: net ecosystem exchange and evapotranspiration over the páramo of southern Ecuador. Agric For Meteorol 265:30–47

    Google Scholar 

  • Chen S, Chen J, Lin G, Zhang W, Miao H, Wei L, Huang J, Han X (2009) Energy balance and partition in Inner Mongolia steppe ecosystems with different land use types. Agric For Meteorol 149(11):1800–1809

    Google Scholar 

  • Du Q et al (2011) Carbon dioxide exchange processes over the grassland ecosystems in semiarid areas of China. Sci China Earth Sci 55(4):644–655

    Google Scholar 

  • Eamus D, Cleverly J, Boulain N, Grant N, Faux R, Villalobos-Vega R (2013) Carbon and water fluxes in an arid-zone Acacia savanna woodland: an analyses of seasonal patterns and responses to rainfall events. Agric For Meteorol 182-183:225–238

    Google Scholar 

  • Falge E, Baldocchi D, Olson R, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H, Granier A, Gross P, Grünwald T, Hollinger D, Jensen NO, Katul G, Keronen P, Kowalski A, Lai CT, Law BE, Meyers T, Moncrieff J, Moors E, Munger JW, Pilegaard K, Rannik Ü, Rebmann C, Suyker A, Tenhunen J, Tu K, Verma S, Vesala T, Wilson K, Wofsy S (2001) Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric For Meteorol 107:43–69

    Google Scholar 

  • Falge E, Baldocchi D, Tenhunen J, Aubinet M, Bakwin P, Berbigier P, Bernhofer C, Burba G, Clement R, Davis KJ, Elbers JA, Goldstein AH, Grelle A, Granier A, Guðmundsson J, Hollinger D, Kowalski AS, Katul G, Law BE, Malhi Y, Meyers T, Monson RK, Munger JW, Oechel W, Paw U KT, Pilegaard K, Rannik Ü, Rebmann C, Suyker A, Valentini R, Wilson K, Wofsy S (2002) Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agric For Meteorol 113:53–74

    Google Scholar 

  • Flanagan L et al (2002) Seasonal and interannual variation in carbon dioxide exchange and carbon balance in a northern temperate grassland. Glob Chang Biol 8:599–615

    Google Scholar 

  • Fu Y, Zheng Z, Yu G, Hu Z, Sun X, Shi P, Wang Y, Zhao X (2009) Environmental influences on carbon dioxide fluxes over three grassland ecosystems in China. Biogeosciences 6:2879–2893

    Google Scholar 

  • Ganjurjav H, Gao Q, Schwartz MW, Zhu W, Liang Y, Li Y, Wan Y, Cao X, Williamson MA, Jiangcun W, Guo H, Lin E (2016) Complex responses of spring vegetation growth to climate in a moisture-limited alpine meadow. Sci Rep 6:23356

    Google Scholar 

  • García A et al (2017) Patterns and controls of carbon dioxide and water vapor fluxes in a dry forest of central Argentina. Agric For Meteorol 247:520–532

    Google Scholar 

  • Green J et al (2019) Large influence of soil moisture on long-term terrestrial carbon uptake. Nature 565(7740):476–479

    Google Scholar 

  • Hao Y, Wang Y, Mei X, Huang X, Cui X, Zhou X, Niu H (2008) CO2, H2O and energy exchange of an Inner Mongolia steppe ecosystem during a dry and wet year. Acta Oecol 33(2):133–143

    Google Scholar 

  • Hao Y, Zhang H, Biederman JA, Li L, Cui X, Xue K, du J, Wang Y (2018) Seasonal timing regulates extreme drought impacts on CO2 and H2O exchanges over semiarid steppes in Inner Mongolia, China. Agric Ecosyst Environ 266:153–166

    Google Scholar 

  • Harazono Y et al (2003) Inter-annual carbon dioxide uptake of a wet sedge tundra ecosystem in the Arctic. Tellus 55B:215–231

    Google Scholar 

  • Hatfield J, Dold C (2019) Water-use efficiency: advances and challenges in a changing climate. Front Plant Sci 10:103

    Google Scholar 

  • Hu Z et al (2008) Effects of vegetation control on ecosystem water use efficiency within and among four grassland ecosystems in China. Glob Chang Biol 14(7):1609–1619

    Google Scholar 

  • Hussain MZ, Grünwald T, Tenhunen JD, Li YL, Mirzae H, Bernhofer C, Otieno D, Dinh NQ, Schmidt M, Wartinger M, Owen K (2011) Summer drought influence on CO2 and water fluxes of extensively managed grassland in Germany. Agric Ecosyst Environ 141(1–2):67–76

    Google Scholar 

  • Jarvis P, McNaughton K (1986) Stomatal control of transpiration: scaling up from leaf to region. Adv Ecol Res 15:1–49

    Google Scholar 

  • Jia X et al (2014) Biophysical controls on net ecosystem CO exchange over a semiarid shrubland in northwest China. Biogeosciences 11:4679–4693

  • Jia X, Zha T, Gong J, Wang B, Zhang Y, Wu B, Qin S, Peltola H (2016) Carbon and water exchange over a temperate semi-arid shrubland during three years of contrasting precipitation and soil moisture patterns. Agric For Meteorol 228-229:120–129

    Google Scholar 

  • Jung M, Reichstein M, Ciais P, Seneviratne SI, Sheffield J, Goulden ML, Bonan G, Cescatti A, Chen J, de Jeu R, Dolman AJ, Eugster W, Gerten D, Gianelle D, Gobron N, Heinke J, Kimball J, Law BE, Montagnani L, Mu Q, Mueller B, Oleson K, Papale D, Richardson AD, Roupsard O, Running S, Tomelleri E, Viovy N, Weber U, Williams C, Wood E, Zaehle S, Zhang K (2010) Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467(7318):951–954

    Google Scholar 

  • Kato T et al (2006) Temperature and biomass influences on interannual changes in CO2 exchange in an alpine meadow on the Qinghai-Tibetan Plateau. Glob Chang Biol 12(7):1285–1298

    Google Scholar 

  • Li S et al (2006) Energy partitioning and its biophysical controls above a grazing steppe in central Mongolia. Agric For Meteorol 137(1–2):89–106

    Google Scholar 

  • Li H, Zhang F, Li Y, Wang J, Zhang L, Zhao L, Cao G, Zhao X, du M (2016) Seasonal and inter-annual variations in CO2 fluxes over 10 years in an alpine shrubland on the Qinghai-Tibetan Plateau, China. Agric For Meteorol 228-229:95–103

    Google Scholar 

  • Li H, Zhu J, Zhang F, He H, Yang Y, Li Y, Cao G, Zhou H (2019) Growth stage-dependant variability in water vapor and CO2 exchanges over a humid alpine shrubland on the northeastern Qinghai-Tibetan Plateau. Agric For Meteorol 268:55–62

  • Liu S et al (2011) A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem. Hydrol Earth Syst Sci 15(4):1291–1306

    Google Scholar 

  • Liu H, Feng J (2012) Seasonal and interannual variations of evapotranspiration and energy exchange over different land surfaces in a semiarid area of China. J Appl Meteorol Climatol 51(10):1875–1888

  • Liu W et al (2017) Repackaging precipitation into fewer, larger storms reduces ecosystem exchanges of CO2 and H2O in a semiarid steppe. Agric For Meteorol 247:356–364

    Google Scholar 

  • Liu S et al (2018) The Heihe integrated observatory network: a basin-scale land surface processes observatory in China. Vadose Zone J 17(1):1–21

    Google Scholar 

  • Lloyd J, Farquhar G (1994) 13C discrimination during CO2 assimilation by the terrestrial biosphere. Oecologia 99(3–4):201–215

    Google Scholar 

  • Lloyd J, Taylor J (1994) On the temperature dependence of soil respiration. Funct Ecol 8:315–323

    Google Scholar 

  • Luan J, Song H, Xiang C, Zhu D, Suolang D (2016) Soil moisture, species composition interact to regulate CO2 and CH4 fluxes in dry meadows on the Tibetan Plateau. Ecol Eng 91:101–112

    Google Scholar 

  • Ma N, Zhang Y, Guo Y, Gao H, Zhang H, Wang Y (2015) Environmental and biophysical controls on the evapotranspiration over the highest alpine steppe. J Hydrol 529:980–992

    Google Scholar 

  • Ma Y, Ma W, Zhong L, Hu Z, Li M, Zhu Z, Han C, Wang B, Liu X (2017) Monitoring and modeling the Tibetan Plateau’s climate system and its impact on East Asia. Sci Rep 7:44574

    Google Scholar 

  • Ma J, Zha T, Jia X, Tian Y, Bourque CPA, Liu P, Bai Y, Wu Y, Ren C, Yu H, Zhang F, Zhou C, Chen W (2018) Energy and water vapor exchange over a young plantation in northern China. Agric For Meteorol 263:334–345

    Google Scholar 

  • McFadden J et al (2003) A regional study of the controls on water vapor and CO2 exchange in arctic tundra. Ecology 84(10):2762–2776

    Google Scholar 

  • Medlyn B et al (2017) How do leaf and ecosystem measures of water-use efficiency compare? New Phytol 216(3):758–770

    Google Scholar 

  • Monteith J (1965) Evaporation and environment. Symp Soc Exp Biol 19:205–234

    Google Scholar 

  • Monteith J, Unsworth M (2013) Principles of environmental physics: plants, animals, and the atmosphere. Academic Press

  • Qiu J (2008) The third pole. Nature 454(7203):393–396

    Google Scholar 

  • Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grunwald T, Havrankova K, Ilvesniemi H, Janous D, Knohl A, Laurila T, Lohila A, Loustau D, Matteucci G, Meyers T, Miglietta F, Ourcival JM, Pumpanen J, Rambal S, Rotenberg E, Sanz M, Tenhunen J, Seufert G, Vaccari F, Vesala T, Yakir D, Valentini R (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob Chang Biol 11(9):1424–1439

    Google Scholar 

  • Rogers A, Serbin SP, Ely KS, Sloan VL, Wullschleger SD (2017) Terrestrial biosphere models underestimate photosynthetic capacity and CO2 assimilation in the Arctic. New Phytol 216(4):1090–1103

    Google Scholar 

  • Saito M et al (2009) Temperature controls ecosystem CO2 exchange of an alpine meadow on the northeastern Tibetan Plateau. Glob Chang Biol 15(1):221–228

    Google Scholar 

  • Scott R et al (2015) The carbon balance pivot point of southwestern U.S. semiarid ecosystems: insights from the 21st century drought. J Geophys Res Biogeosci 120(12):2612–2624

    Google Scholar 

  • Shao C, Chen J, Chu H, Lafortezza R, Dong G, Abraha M, Batkhishig O, John R, Ouyang Z, Zhang Y, Qi J (2017) Grassland productivity and carbon sequestration in Mongolian grasslands: the underlying mechanisms and nomadic implications. Environ Res 159:124–134

    Google Scholar 

  • Sharma S, Rajan N, Cui S, Maas S, Casey K, Ale S, Jessup R (2019) Carbon and evapotranspiration dynamics of a non-native perennial grass with biofuel potential in the southern U.S. Great Plains. Agric For Meteorol 269-270:285–293

    Google Scholar 

  • Shi P, Sun X, Xu L, Zhang X, He Y, Zhang D, Yu G (2006) Net ecosystem CO2 exchange and controlling factors in a steppe—Kobresia meadow on the Tibetan Plateau. Sci China Ser D Earth Sci 49(S2):207–218. https://doi.org/10.1007/s11430-006-8207-4

    Article  Google Scholar 

  • Sims P, Bradford J (2001) Carbon dioxide fluxes in a southern plains prairie. Agric For Meteorol 109:117–134

    Google Scholar 

  • Sun G, Alstad K, Chen J, Chen S, Ford CR, Lin G, Liu C, Lu N, McNulty SG, Miao H, Noormets A, Vose JM, Wilske B, Zeppel M, Zhang Y, Zhang Z (2011) A general predictive model for estimating monthly ecosystem evapotranspiration. Ecohydrology 4(2):245–255

    Google Scholar 

  • Sun S, Che T, Li H, Wang T, Ma C, Liu B, Wu Y, Song Z (2019) Water and carbon dioxide exchange of an alpine meadow ecosystem in the northeastern Tibetan Plateau is energy-limited. Agric For Meteorol 275:283–295

    Google Scholar 

  • Tang X et al (2014) How is water-use efficiency of terrestrial ecosystems distributed and changing on earth? Sci Rep 4:7483

    Google Scholar 

  • The Compiling Committee of the Atlas of Grassland Resources of China (1993) The atlas of grassland resources of China. SinoMaps Press, Beijing

    Google Scholar 

  • Tong X et al (2012) Ecosystem carbon exchange over a warm-temperate mixed plantation in the lithoid hilly area of the North China. Atmos Environ 49:257–267

  • Tong X et al (2019) Water stress controls on carbon flux and water use efficiency in a warm-temperate mixed plantation. J Hydrol 571:669–678

  • Wang L et al (2016a) Water and CO2 fluxes over semiarid alpine steppe and humid alpine meadow ecosystems on the Tibetan Plateau. Theor Appl Climatol 131(1–2):547–556

  • Wang L, Liu H, Sun J, Feng J (2016b) Water and carbon dioxide fluxes over an alpine meadow in southwest China and the impact of a spring drought event. Int J Biometeorol 60(2):195–205

  • Wang Y, Zhou G, Wang Y (2008) Environmental effects on net ecosystem CO2 exchange at half-hour and month scales over Stipa krylovii steppe in northern China. Agric For Meteorol 148(5):714–722

    Google Scholar 

  • Wang L, Liu H, Sun J, Shao Y (2017) Biophysical effects on the interannual variation in carbon dioxide exchange of an alpine meadow on the Tibetan Plateau. Atmos Chem Phys 17(8):5119–5129

    Google Scholar 

  • Wang T, Tang X, Zheng C, Gu Q, Wei J, Ma M (2018a) Differences in ecosystem water-use efficiency among the typical croplands. Agric Water Manag 209:142–150

    Google Scholar 

  • Wang Y, Zhou L, Ping X, Jia Q, Li R (2018b) Ten-year variability and environmental controls of ecosystem water use efficiency in a rainfed maize cropland in Northeast China. Field Crop Res 226:48–55

    Google Scholar 

  • Wu C et al (2013) Interannual variability of net ecosystem productivity in forests is explained by carbon flux phenology in autumn. Global Ecol Biogeogr 22:994–1006

  • Wutzler T, Lucas-Moffat A, Migliavacca M, Knauer J, Sickel K, Šigut L, Menzer O, Reichstein M (2018) Basic and extensible post-processing of eddy covariance flux data with REddyProc. Biogeosciences 15:5015–5030

    Google Scholar 

  • Xiao L et al (2017) Revised algorithm of ecosystem water use efficiency for semi-arid steppe in the Loess Plateau of China. Chin J Plant Ecol 41(5):497–505 (Chinese with English abstract)

    Google Scholar 

  • Xu Y et al (2020) Environmental and canopy stomatal control on ecosystem water use efficiency in a riparian poplar plantation. Agric For Meteorol 287:107953

    Google Scholar 

  • Yang F, Zhou G, Hunt JE, Zhang F (2011) Biophysical regulation of net ecosystem carbon dioxide exchange over a temperate desert steppe in Inner Mongolia, China. Agric Ecosyst Environ 142:318–328

    Google Scholar 

  • Yang Y, Guan H, Batelaan O, McVicar TR, Long D, Piao S, Liang W, Liu B, Jin Z, Simmons CT (2016) Contrasting responses of water use efficiency to drought across global terrestrial ecosystems. Sci Rep 6:23284

    Google Scholar 

  • Yu G, Song X, Wang Q, Liu Y, Guan D, Yan J, Sun X, Zhang L, Wen X (2008) Water-use efficiency of forest ecosystems in eastern China and its relations to climatic variables. New Phytol 177(4):927–937

    Google Scholar 

  • Zeeman M et al (2017) Reduced snow cover affects productivity of upland temperate grasslands. Agric For Meteorol 232:514–526

    Google Scholar 

  • Zhang S et al (2016) Surface energy fluxes and controls of evapotranspiration in three alpine ecosystems of Qinghai Lake watershed, NE Qinghai-Tibet Plateau. Ecohydrology 9(2):267–279

    Google Scholar 

  • Zhang F et al (2018a) Net radiation rather than surface moisture limits evapotranspiration over a humid alpine meadow on the northeastern Qinghai-Tibetan Plateau. Ecohydrology 11(2):1–11

  • Zhang T, Zhang Y, Xu M, Zhu J, Chen N, Jiang Y, Huang K, Zu J, Liu Y, Yu G (2018b) Water availability is more important than temperature in driving the carbon fluxes of an alpine meadow on the Tibetan Plateau. Agric For Meteorol 256-257:22–31

    Google Scholar 

  • Zhou S, Yu B, Huang Y, Wang G (2014) The effect of vapor pressure deficit on water use efficiency at the subdaily time scale. Geophys Res Lett 41(14):5005–5013

    Google Scholar 

  • Zhou S, Yu B, Huang Y, Wang G (2015) Daily underlying water use efficiency for AmeriFlux sites. J Geophys Res Biogeosci 120:887–902

    Google Scholar 

  • Zhou S, Yu B, Zhang Y, Huang Y, Wang G (2016) Partitioning evapotranspiration based on the concept of underlying water use efficiency. Water Resour Res 52(2):1160–1175

    Google Scholar 

  • Zhu X et al (2015a) Spatial variability of water use efficiency in China’s terrestrial ecosystems. Glob Planet Chang 129:37–44

    Google Scholar 

  • Zhu Z, Ma Y, Li M, Hu Z, Xu C, Zhang L, Han C, Wang Y, Ichiro T (2015b) Carbon dioxide exchange between an alpine steppe ecosystem and the atmosphere on the Nam Co area of the Tibetan Plateau. Agric For Meteorol 203:169–179

    Google Scholar 

Download references

Acknowledgments

We thank the HeiheWatershed Allied Telemetry Experimental Research (Hi-WATER) for providing the data.

Funding

This research was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDA20060101), the Second Tibetan Plateau Scientific Expedition and Research (STEP) program (2019QZKK0103), the National Natural Science Foundation of China (41661144043, 41605009 and 91637312), and the Key Research Program of Frontier Sciences of Chinese Academy of Sciences (QYZDJ-SSW-DQC019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaoming Ma.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1007 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Ma, Y., Li, H. et al. Carbon and water fluxes and their coupling in an alpine meadow ecosystem on the northeastern Tibetan Plateau. Theor Appl Climatol 142, 1–18 (2020). https://doi.org/10.1007/s00704-020-03303-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-020-03303-3

Navigation