Skip to main content

Advertisement

Log in

Validity of operative information in Japanese administrative data: a chart review-based analysis of 1221 cases at a single institution

  • Original Article
  • Published:
Surgery Today Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the validity of operative information recorded in the Diagnosis Procedure Combination (DPC) database, a national inpatient database including administrative claims data.

Methods

We reviewed the medical charts of 1221 patients who underwent one of six surgeries (breast, esophageal, gastric, thyroid cancer surgery, appendectomy, or inguinal hernia repair) at a surgery department of a university hospital from April 2016 to March 2019. We compared operative information (type, date, laterality of procedure; type of anesthesia; transfusion; and duration of anesthesia) recorded in the DPC database with the information recorded in the medical charts.

Results

The DPC data for type, date, laterality of surgery, and type of anesthesia were accurate in 99% of the reviewed patients. The sensitivity and specificity for identifying whether a patient received a transfusion procedure were 97.5% and 99.6%, respectively. Data regarding the duration of anesthesia in the DPC database were identical to those in medical chart records in 1114 of 1216 cases that received general or spinal anesthesia (91.5%). The duration of anesthesia in the DPC data was 53 min longer on average than the recorded operative time in the medical charts.

Conclusion

The DPC database had high validity for operative information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Aylin P, Alexandrescu R, Jen MH, Mayer EK, Bottle A. Day of week of procedure and 30 day mortality for elective surgery: Retrospective analysis of hospital episode statistics. BMJ. 2013;346: f2424. https://doi.org/10.1136/bmj.f2424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Donatini G, Marciniak C, Lenne X, Clément G, Bruandet A, Sebag F, et al. Risk factors of Redo surgery after unilateral focused parathyroidectomy: conclusions from a comprehensive nationwide database of 13,247 interventions over 6 years. Ann Surg. 2020;272:801–6. https://doi.org/10.1097/SLA.0000000000004269.

    Article  PubMed  Google Scholar 

  3. Haglin JM, Eltorai AEM, Richter KR, Jogerst K, Daniels AH. Medicare reimbursement for general surgery procedures: 2000 To 2018. Ann Surg. 2020;271:17–22. https://doi.org/10.1097/SLA.0000000000003289.

    Article  PubMed  Google Scholar 

  4. Behman R, Nathens AB, Mason S, Byrne JP, Hong NL, Pechlivanoglou P, et al. Association of surgical intervention for adhesive small-bowel obstruction with the risk of recurrence. JAMA Surg. 2019;154:413–20. https://doi.org/10.1001/jamasurg.2018.5248.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Konishi T, Fujiogi M, Michihata N, Tanaka-Mizutani H, Morita K, Matsui H, et al. Breast cancer surgery in patients with schizophrenia: short-term outcomes from a nationwide cohort. Br J Surg. 2021;108:168–73. https://doi.org/10.1093/bjs/znaa070.

    Article  CAS  PubMed  Google Scholar 

  6. Virnig BA, Mcbean M. Administrative data for public health surveillance and planning. Annu Rev Public Health. 2001;22:213–30. https://doi.org/10.1146/annurev.publhealth.22.1.213.

    Article  CAS  PubMed  Google Scholar 

  7. Schneeweiss S, Avorn J. A review of uses of health care utilization databases for epidemiologic research on therapeutics. J Clin Epidemiol. 2005;58:323–37. https://doi.org/10.1016/j.jclinepi.2004.10.012.

    Article  PubMed  Google Scholar 

  8. Terris DD, Litaker DG, Koroukian SM. Health state information derived from secondary databases is affected by multiple sources of bias. J Clin Epidemiol. 2007;60:734–41. https://doi.org/10.1016/j.jclinepi.2006.08.012.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Van Walraven C, Bennett C, Forster AJ. Administrative database research infrequently used validated diagnostic or procedural codes. J Clin Epidemiol. 2011;64:1054–9. https://doi.org/10.1016/j.jclinepi.2011.01.001.

    Article  PubMed  Google Scholar 

  10. Yasunaga H. Real world data in Japan: chapter II the Diagnosis Procedure Combination database. Ann Clin Epidemiol. 2019;1:76–9.

    Article  Google Scholar 

  11. Yamana H, Matsui H, Sasabuchi Y, Fushimi K, Yasunaga H. Categorized diagnoses and procedure records in an administrative database improved mortality prediction. J Clin Epidemiol. 2015;68:1028–35. https://doi.org/10.1016/j.jclinepi.2014.12.004.

    Article  PubMed  Google Scholar 

  12. Yamana H, Moriwaki M, Horiguchi H, Kodan M, Fushimi K, Yasunaga H. Validity of diagnoses, procedures, and laboratory data in Japanese administrative data. J Epidemiol. 2017;27:476–82. https://doi.org/10.1016/j.je.2016.09.009.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ando T, Ooba N, Mochizuki M, Koide D, Kimura K, Lee SL, et al. Positive predictive value of ICD-10 codes for acute myocardial infarction in Japan: a validation study at a single center. BMC Health Serv Res. 2018;18:895. https://doi.org/10.1186/s12913-018-3727-0.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sato I, Yagata H, Ohashi Y. The accuracy of Japanese claims data in identifying breast cancer cases. Biol Pharm Bull. 2015;38:53–7. https://doi.org/10.1248/bpb.b14-00543.

    Article  CAS  PubMed  Google Scholar 

  15. Yamana H, Horiguchi H, Fushimi K, Yasunaga H. Comparison of procedure-based and diagnosis-based identifications of severe sepsis and disseminated intravascular coagulation in administrative data. J Epidemiol. 2016;26:530–7. https://doi.org/10.2188/jea.JE20150286.

    Article  PubMed  Google Scholar 

  16. Shigemi D, Morishima T, Yamana H, Yasunaga H, Miyashiro I. Validity of initial cancer diagnoses in the Diagnosis Procedure Combination data in Japan. Cancer Epidemiol. 2021;74: 102016. https://doi.org/10.1016/j.canep.2021.102016.

    Article  PubMed  Google Scholar 

  17. Sakamoto T, Fujiogi M, Matsui H, Fushimi K, Yasunaga H. Comparing perioperative mortality and morbidity of minimally invasive esophagectomy versus open esophagectomy for esophageal cancer: a nationwide retrospective analysis. Ann Surg. 2021;274:324–30. https://doi.org/10.1097/SLA.0000000000003500.

    Article  PubMed  Google Scholar 

  18. Konishi T, Fujiogi M, Niwa T, Morita K, Matsui H, Fushimi K, et al. Comparison of outcomes after differentiated thyroid cancer surgery performed with and without energy devices: a population-based cohort study using a nationwide database in Japan. Int J Surg. 2020;77:198–204. https://doi.org/10.1016/j.ijsu.2020.03.072.

    Article  PubMed  Google Scholar 

  19. Katsuki R, Jo T, Yasunaga H, Kumazawa R, Uda K. Outcomes of laparoscopic versus open pancreatoduodenectomy: a nationwide retrospective cohort study. Surgery. 2021;169:1427–33. https://doi.org/10.1016/j.surg.2020.12.018.

    Article  PubMed  Google Scholar 

  20. Konishi T, Fujiogi M, Michihata N, Morita K, Matsui H, Fushimi K, et al. Comparison of short-term surgical outcomes between men and women with breast cancer: a retrospective study using nationwide inpatient data in Japan. Breast Cancer Res Treat. 2021;186:731–9. https://doi.org/10.1007/s10549-020-06069-4.

    Article  PubMed  Google Scholar 

  21. Yasunaga H, Ide H, Imamura T, Ohe K. Impact of the Japanese Diagnosis Procedure Combination-based payment system on cardiovascular medicine-related costs. Int Heart J. 2005;46:855–66. https://doi.org/10.1536/ihj.46.855.

    Article  PubMed  Google Scholar 

  22. Yamaguchi M, Inomata S, Harada S, Matsuzaki Y, Kawaguchi M, Ujibe M, et al. Establishment of the MID-NET® medical information database network as a reliable and valuable database for drug safety assessments in Japan. Pharmacoepidemiol Drug Saf. 2019;28:1395–404. https://doi.org/10.1002/pds.4879.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Humphries KH, Rankin JM, Carere RG, Buller CE, Kiely FM, Spinelli JJ. Co-morbidity data in outcomes research: are clinical data derived from administrative databases a reliable alternative to chart review? J Clin Epidemiol. 2000;53:343–9. https://doi.org/10.1016/s0895-4356(99)00188-2.

    Article  CAS  PubMed  Google Scholar 

  24. Wilchesky M, Tamblyn RM, Huang A. Validation of diagnostic codes within medical services claims. J Clin Epidemiol. 2004;57:131–41. https://doi.org/10.1016/S0895-4356(03)00246-4.

    Article  PubMed  Google Scholar 

  25. Quan H, Parsons GA, Ghali WA. Validity of information on comorbidity derived rom ICD-9-CCM administrative data. Med Care. 2002;40:675–85. https://doi.org/10.1097/00005650-200208000-00007.

    Article  PubMed  Google Scholar 

  26. Januel JM, Luthi JC, Quan H, Borst F, Taffé P, Ghali WA, et al. Improved accuracy of co-morbidity coding over time after the introduction of ICD-10 administrative data. BMC Health Serv Res. 2011;11:194. https://doi.org/10.1186/1472-6963-11-194.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lee DS, Donovan L, Austin PC, Gong Y, Liu PP, Rouleau JL, et al. Comparison of coding of heart failure and comorbidities in administrative and clinical data for use in outcomes research. Med Care. 2005;43:182–8. https://doi.org/10.1097/00005650-200502000-00012.

    Article  PubMed  Google Scholar 

  28. MacCallum C, Da Silva N, Gibbs P, Thomson BNJ, Skandarajah A, Hayes I. Accuracy of administrative coding data in colorectal cancer resections and short-term outcomes. ANZ J Surg. 2018;88:876–81. https://doi.org/10.1111/ans.14714.

    Article  PubMed  Google Scholar 

  29. Park HR, Im S, Kim H, Jung SY, Kim D, Jang EJ, et al. Validation of algorithms to identify knee osteoarthritis patients in the claims database. Int J Rheum Dis. 2019;22:890–6. https://doi.org/10.1111/1756-185X.13470.

    Article  PubMed  Google Scholar 

  30. Singh SM, Webster L, Calzavara A, Wijeysundera HC. Validation of algorithms to identify invasive electrophysiology procedures using administrative data in Ontario. Canada Med Care. 2017;55:e44–50. https://doi.org/10.1097/MLR.0000000000000274.

    Article  PubMed  Google Scholar 

  31. Assimon MM, Nguyen T, Katsanos SL, Brunelli SM, Flythe JE. Identification of volume overload hospitalizations among hemodialysis patients using administrative claims: a validation study. BMC Nephrol. 2016;17:173. https://doi.org/10.1186/s12882-016-0384-6.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bartels CM, Singh JA, Parperis K, Huber K, Rosenthal AK. Validation of administrative codes for calcium pyrophosphate deposition: a Veterans Administration study. J Clin Rheumatol. 2015;21:189–92. https://doi.org/10.1097/RHU.0000000000000251.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Greenberg JA, Hohmann SF, Hall JB, Kress JP, David MZ. Validation of a method to identify immunocompromised patients with severe sepsis in administrative databases. Ann Am Thorac Soc. 2016;13:253–8. https://doi.org/10.1513/AnnalsATS.201507-415BC.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was not supported by any grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takaaki Konishi.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest in association with the present study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 32 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konishi, T., Yoshimoto, T., Fujiogi, M. et al. Validity of operative information in Japanese administrative data: a chart review-based analysis of 1221 cases at a single institution. Surg Today 52, 1484–1490 (2022). https://doi.org/10.1007/s00595-022-02521-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00595-022-02521-8

Keywords

Navigation