Skip to main content

Advertisement

Log in

Differentiation of benign and malignant regions in paraffin embedded tissue blocks of pulmonary adenocarcinoma using micro CT scanning of paraffin tissue blocks: a pilot study for method validation

  • Original Article
  • Published:
Surgery Today Aims and scope Submit manuscript

Abstract

Purpose

Micro computed tomography (micro-CT) can provide detailed information about the internal structure of materials. This study aimed to demonstrate the diagnostic value of micro-CT in formalin fixed paraffin embedded pulmonary adenocarcinomas by correlating the micro-CT findings of tumoral and non-tumoral areas with hematoxylin and eosin (HE) sections.

Methods

Paraffin blocks obtained from three adenocarcinomas were scanned with micro-CT. Ten regions of interest (ROIs) from adenocarcinoma and 11 ROIs from pulmonary parenchyma (ROI-C and ROI-N, respectively) areas were compared regarding the various structural parameters.

Results

All parameters were significantly different regarding the tumoral and non-tumoral ROIs. The percent object volume, structure thickness, structure linear density, connectivity and connectivity density were higher in ROI-Cs (p < 0.000, p < 0.000, p = 0.001, p < 0.000, and p < 0.000 respectively); whereas intersection surface and structure model index were higher in ROI-Ns (p < 0.000 and p < 0.000). The open porosity percentage was higher in ROI-Ns (68.86 + 2.96 vs 48.29 + 5.11, p < 0.000) and the closed porosity percentage was higher in ROI-Cs (2.29 + 0.55 vs 0.57 + 0.17 p < 0.000).

Conclusions

The tumoral and non-tumoral areas in paraffin blocks can be distinguished from each other, using the quantitative and qualitative information obtained by micro-CT. Making this distinction with quantitative data obtained from micro-CT can therefore be the basis of creating artificial intelligence algorithms in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CT:

Computed tomography

LC:

Lung cancer

SD:

Standard deviation

Min–max:

Minimum–maximum

Micro-CT:

Micro computed tomography

3D:

Three dimensional

HE:

Hematoxylin and eosin

FFPE:

Formalin fixed and paraffin embedded

ROI:

Region of interest

ROI-C:

ROI-carcinoma

ROI-N:

ROI- non-tumoral pulmonary parenchyma

OV/TV:

Percent object volume

TV:

Tissue volume

ST:

Structural thickness

IS:

Intersection surface

SMI:

Structure model index

SLD:

Structure linear density

Cn:

Connectivity

CnD:

Connectivity density

WSI:

Whole slide imaging

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. https://doi.org/10.3322/caac.21492.

    Article  PubMed  Google Scholar 

  2. National Comprehensive Cancer Network. NCCN Clinical practice guidelines in oncology. Non-small cell lung cancer. Version, 2.2020-Dec 23, 2019. 2019 Accessed 03 Feb 2020.

  3. Didkowska J, Wojciechowska U, Mańczuk M, Łobaszewski J. Lung cancer epidemiology: contemporary and future challenges worldwide. Ann Transl Med. 2016;4(8):150. https://doi.org/10.21037/atm.2016.03.11.PMID:27195268;PMCID:PMC4860480.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Xu B, Teplov A, Ibrahim K, Inoue T, Stueben B, Katabi N, et al. Detection and assessment of capsular invasion, vascular invasion and lymph node metastasis volume in thyroid carcinoma using microCT scanning of paraffin tissue blocks (3D whole block imaging): a proof of concept. Mod Pathol. 2020;33(12):2449–57. https://doi.org/10.1038/s41379-020-0605-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang S, Yang DM, Rong R, Zhan X, Xiao G. Pathology image analysis using segmentation deep learning algorithms. Am J Pathol. 2019;189(9):1686–98. https://doi.org/10.1016/j.ajpath.2019.05.007 ((Epub 2019 Jun 11. PMID: 31199919; PMCID: PMC6723214)).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Orhan K, Jacobs R, Celikten B, Huang Y, de FariaVasconcelos K, Nicolielo LFP, et al. Evaluation of threshold values for root canal filling voids in micro-CT and nano-CT images. Scanning. 2018;2018:9437569. https://doi.org/10.1155/2018/9437569.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Guldberg RE, Ballock RT, Boyan BD, Duvall CL, Lin AS, Nagaraja S, et al. Analyzing bone, blood vessels, and biomaterials with microcomputed tomography. IEEE Eng Med Biol Mag. 2003;22(5):77–83. https://doi.org/10.1109/memb.2003.1256276.

    Article  CAS  PubMed  Google Scholar 

  8. Orhan K. Micro-computed Tomography (micro-CT) in Medicine and Engineering, Springer 2020

  9. Shearer T, Bradley RS, Hidalgo-Bastida LA, Sherratt MJ, Cartmell SH. Three-dimensional visualisation of soft biological structures by X-ray computed microtomography. J Cell Sci. 2016;129(13):2483–92. https://doi.org/10.1242/jcs.179077.

    Article  CAS  PubMed  Google Scholar 

  10. Descamps E, Sochacka A, de Kegel B, Van Loo D, Hoorebeke L, Adriaens D. Soft tissue discrimination with contrast agents using micro-ct scanning. Belgian J Zool. 2014;144(1):20–40. https://doi.org/10.26496/bjz.2014.63.

    Article  Google Scholar 

  11. Kampschulte M, Schneider CR, Litzlbauer HD, Tscholl D, Schneider C, Zeiner C, et al. Quantitative 3D Micro-CT imaging of human lung tissue. FortschrRöntgenstr. 2013;185:869–76. https://doi.org/10.1055/s-0033-1350105.

    Article  CAS  Google Scholar 

  12. Cavanaugh D, Johnson E, Price RE, Kurie J, Travis EL, Cody DD. In vivo respiratory-gated micro-CT imaging in small-animal oncology models. Mol Imaging. 2004;3(1):55–62. https://doi.org/10.1162/153535004773861723 (PMID: 15142412).

    Article  PubMed  Google Scholar 

  13. Farahani Navid, Braun Alex, Jutt Dylan, Huffman Todd, Reder Nick, Liu Zheng, et al. Three-dimensional imaging and scanning: current and future applications for pathology. J Pathol Inform. 2017;8:36. https://doi.org/10.4103/jpi.jpi_32_17.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Senter-Zapata M, Patel K, Bautista PA, Griffin M, Michaelson J, Yagi Y. The role of micro-CT in 3D histology imaging. Pathobiology. 2016;83:140–7. https://doi.org/10.1159/000442387.

    Article  PubMed  Google Scholar 

  15. Bilezikian JP. The parathyroids basic and clinical concepts book. 3rd ed. USA: Elsevier; 2015. p. 881.

    Google Scholar 

  16. Mishaela R, Rubin MD, John P, Bilezikian MD. Anabolic therapy of osteoporosis in women and in men. In: Legato MJ, editor. Principles of gender-specific medicine. California: Elsevier Academic Press; 2004. p. 995–1009 ((Chapter 92)).

    Google Scholar 

  17. Ganeshan B, Miles KA. Quantifying tumour heterogeneity with CT. Cancer Imaging. 2013;13(1):140–9. https://doi.org/10.1102/1470-7330.2013.0015 (PMID:23545171;PMCID:PMC3613789).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Miles KA, Ganeshan B, Hayball MP. CT texture analysis using the filtration-histogram method: what do the measurements mean? Cancer Imaging. 2013;13(3):400–6. https://doi.org/10.1102/1470-7330.2013.9045 (PMID:24061266;PMCID:PMC3781643).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wang X, Sun W, Liang H, Mao X, Lu Z. Radiomics signatures of computed tomography imaging for predicting risk categorization and clinical stage of thymomas. Biomed Res Int. 2019;28:3616852. https://doi.org/10.1155/2019/3616852.

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayten Kayı Cangır.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kayı Cangır, A., Dizbay Sak, S., Güneş, G. et al. Differentiation of benign and malignant regions in paraffin embedded tissue blocks of pulmonary adenocarcinoma using micro CT scanning of paraffin tissue blocks: a pilot study for method validation. Surg Today 51, 1594–1601 (2021). https://doi.org/10.1007/s00595-021-02252-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00595-021-02252-2

Keywords

Navigation