Skip to main content

Advertisement

Log in

Characterization of tumor microbiome and associations with prognosis in intrahepatic cholangiocarcinoma

  • Original Article―Liver, Pancreas, and Biliary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

The tumor microbiome has been characterized in several malignancies; however, no previous studies have investigated its role in intrahepatic cholangiocarcinoma (ICC). Hence, we explored the tumor microbiome and its association with prognosis in ICC.

Methods

One hundred and twenty-one ICC tumor samples and 89 adjacent normal tissues were profiled by 16S rRNA sequencing. Microbial differences between tumor and adjacent nontumoral liver tissues were assessed. Tumor microbial composition was then evaluated to detect its association with prognosis. Finally, a risk score calculated by the tumor microbiota was accessed by the least absolute shrinkage and selector operator method (Lasso) to predict prognosis of ICC.

Results

The tumor microbiome displayed a greater diversity than that in adjacent nontumoral liver tissues. Tumor samples were characterized by a higher abundance of Firmicutes, Actinobacteria, Bacteroidetes, and Acidobacteriota. Higher tumor microbial α diversity was associated with lymph node metastasis and predicted shortened overall survival (OS) and recurrence-free survival (RFS). A total of 11 bacteria were selected to generate the risk score by Lasso. This score showed potential in predicting OS, and was an independent risk factor for OS.

Conclusion

In conclusion, our study characterized the tumor microbiome and revealed its role in predicting prognosis in ICC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Banales JM, Marin JJG, Lamarca A, et al. Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nat Rev Gastroenterol Hepatol. 2020;17:557–88.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Huang YH, Zhang CZ, Huang QS, et al. Clinicopathologic features, tumor immune microenvironment and genomic landscape of Epstein-Barr virus-associated intrahepatic cholangiocarcinoma. J Hepatol. 2021;74:838–49.

    Article  CAS  PubMed  Google Scholar 

  3. Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006;124:837–48.

    Article  CAS  PubMed  Google Scholar 

  4. de Martel C, Ferlay J, Franceschi S, et al. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol. 2012;13:607–15.

    Article  PubMed  Google Scholar 

  5. Iida N, Dzutsev A, Stewart CA, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science (New York, NY). 2013;342:967–70.

    Article  CAS  Google Scholar 

  6. Garrett WS. Cancer and the microbiota. Science (New York, NY). 2015;348:80–6.

    Article  CAS  Google Scholar 

  7. Nejman D, Livyatan I, Fuks G, et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science (New York, NY). 2020;368:973–80.

    Article  CAS  Google Scholar 

  8. Kostic AD, Chun E, Robertson L, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe. 2013;14:207–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Le Noci V, Guglielmetti S, Arioli S, et al. Modulation of pulmonary microbiota by antibiotic or probiotic aerosol therapy: a strategy to promote immunosurveillance against lung metastases. Cell Rep. 2018;24:3528–38.

    Article  PubMed  Google Scholar 

  10. Herraez E, Romero MR, Macias RIR, et al. Clinical relevance of the relationship between changes in gut microbiota and bile acid metabolism in patients with intrahepatic cholangiocarcinoma. Hepatobiliary Surg Nutr. 2020;9:211–4.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhou SL, Dai Z, Zhou ZJ, et al. CXCL5 contributes to tumor metastasis and recurrence of intrahepatic cholangiocarcinoma by recruiting infiltrative intratumoral neutrophils. Carcinogenesis. 2014;35:597–605.

    Article  CAS  PubMed  Google Scholar 

  12. Wittekind C. Pitfalls in the classification of liver tumors. Pathologe. 2006;27:289–93.

    Article  CAS  PubMed  Google Scholar 

  13. Davis NM, Proctor DM, Holmes SP, et al. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome. 2018;6:226.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Magoč T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics (Oxford, England). 2011;27:2957–63.

    PubMed  Google Scholar 

  15. Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bokulich NA, Subramanian S, Faith JJ, et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods. 2013;10:57–9.

    Article  CAS  PubMed  Google Scholar 

  17. Edgar RC, Haas BJ, Clemente JC, et al. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics (Oxford, England). 2011;27:2194–200.

    CAS  PubMed  Google Scholar 

  18. Haas BJ, Gevers D, Earl AM, et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 2011;21:494–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8.

    Article  CAS  PubMed  Google Scholar 

  20. Quast C, Pruesse E, Yilmaz P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590-596.

    Article  CAS  PubMed  Google Scholar 

  21. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Greathouse KL, White JR, Vargas AJ, et al. Interaction between the microbiome and TP53 in human lung cancer. Genome Biol. 2018;19:123.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Pushalkar S, Hundeyin M, Daley D, et al. The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov. 2018;8:403–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang W, Chen CH, Jia M, et al. Tumor-associated microbiota in esophageal squamous cell carcinoma. Front Cell Dev Biol. 2021;9: 641270.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gao Z, Guo B, Gao R, et al. Microbiota disbiosis is associated with colorectal cancer. Front Microbiol. 2015;6:20.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Riquelme E, Zhang Y, Zhang L, et al. Tumor microbiome diversity and composition influence pancreatic cancer outcomes. Cell. 2019;178:795-806.e712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mima K, Nishihara R, Qian ZR, et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut. 2016;65:1973–80.

    Article  CAS  PubMed  Google Scholar 

  28. Yamamura K, Izumi D, Kandimalla R, et al. Intratumoral fusobacterium nucleatum levels predict therapeutic response to neoadjuvant chemotherapy in esophageal squamous cell carcinoma. Clin Cancer Res. 2019;25:6170–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shin NR, Whon TW, Bae JW. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015;33:496–503.

    Article  CAS  PubMed  Google Scholar 

  30. Huang C, Li M, Liu B, et al. Relating gut microbiome and its modulating factors to immunotherapy in solid tumors: a systematic review. Front Oncol. 2021;11: 642110.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhou SL, Zhou ZJ, Hu ZQ, et al. Tumor-associated neutrophils recruit macrophages and T-regulatory cells to promote progression of hepatocellular carcinoma and resistance to sorafenib. Gastroenterology. 2016;150(1646–1658): e1617.

    Google Scholar 

  32. Zhou SL, Zhou ZJ, Hu ZQ, et al. Genomic sequencing identifies WNK2 as a driver in hepatocellular carcinoma and a risk factor for early recurrence. J Hepatol. 2019. https://doi.org/10.1016/j.jhep.2019.07.014.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhou SL, Yin D, Hu ZQ, et al. A positive feedback loop between cancer stem-like cells and tumor-associated neutrophils controls hepatocellular carcinoma progression. Hepatology. 2019;70:1214–30.

    Article  CAS  PubMed  Google Scholar 

  34. Tian MX, Zhou YF, Qu WF, et al. Histopathology-based immunoscore predicts recurrence for intrahepatic cholangiocarcinoma after hepatectomy. Cancer Immunol Immunother. 2019;68:1369–78.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang R, Li Q, Fu J, et al. Comprehensive analysis of genomic mutation signature and tumor mutation burden for prognosis of intrahepatic cholangiocarcinoma. BMC Cancer. 2021;21:112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhou Z, Wang P, Sun R, et al. Tumor-associated neutrophils and macrophages interaction contributes to intrahepatic cholangiocarcinoma progression by activating STAT3. J Immunother Cancer. 2021. https://doi.org/10.1136/jitc-2020-001946.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhou SL, Xin HY, Sun RQ, et al. Association of KRAS variant subtypes with survival and recurrence in patients with surgically treated intrahepatic cholangiocarcinoma. JAMA Surg. 2022;157:59–65.

    Article  PubMed  Google Scholar 

  38. Zhou SL, Luo CB, Song CL, et al. Genomic evolution and the impact of SLIT2 mutation in relapsed intrahepatic cholangiocarcinoma. Hepatology. 2022;75:831–46.

    Article  CAS  PubMed  Google Scholar 

  39. Dong L, Lu D, Chen R, et al. Proteogenomic characterization identifies clinically relevant subgroups of intrahepatic cholangiocarcinoma. Cancer Cell. 2022;40:70-87.e15.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was jointly supported by the National Natural Science Foundation of China (No. 82173260, No. 81972708, No. 82072681, No. 82003082, No. 81773069, No. 81830102, No. 81772578) and the National Key R&D Program of China (No. 2019YFC1315800, 2019YFC1315802, 2018YFA0109400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-Lai Zhou.

Ethics declarations

Conflict of interest

Hao-Yang Xin, Ji-Xue Zou, Rong-Qi Sun, Zhi-Qiang Hu, Zhuo Chen, Chu-Bin Luo, Zheng-Jun Zhou, Peng-Cheng Wang, Jia Li, Song-Yang Yu, Kai-Xuan Liu, Jia Fan, Jian Zhou and Shao-Lai Zhou declare that they have no potential conflicts of interest. The study was approved by the research ethics committee of Zhongshan Hospital, Fudan University, and written informed consent was obtained from all patients.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, HY., Zou, JX., Sun, RQ. et al. Characterization of tumor microbiome and associations with prognosis in intrahepatic cholangiocarcinoma. J Gastroenterol 59, 411–423 (2024). https://doi.org/10.1007/s00535-024-02090-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-024-02090-2

Keywords

Navigation