Skip to main content

Advertisement

Log in

Phenological trends of multi-taxonomic groups in Latvia, 1970–2018

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Phenology provides intimate insights into ongoing changes in nature and seasonality with respect to humans. In this study, the most complete volunteer observer phenological data set for the territory of Latvia from 1970 to 2018 was evaluated. The data set includes observations of 159 phases of eight taxonomical groups, as well as abiotic phenomena such as the first snow, last spring frost, and agrarian activities. With reducing dimensionality, a hierarchical cluster analysis was used to group the 66 phenological phases of most observations into 7 clusters. The largest changes were observed in the early spring phenological phases of the pioneer species such as the start of flowering of Corylus avellana (hazel), Alnus incana (grey alder) and Populus tremula (aspen), noted as −8 days/decade. The trend of the spring emergence of insects and spring migratory birds also showed a negative tendency. The phenology of crops and agrarian activities has not changed significantly. The trends of the autumn phases were heterogeneous—leaf colouration and fall for some species (Populus tremula) and (Acer platanoides, Norway maple) was recorded on average later; for other species, there was a slightly earlier trend (Betula pendula, silver birch; Tilia cordata, linden). Earlier onset of the spring phases affects the changes in the length of the growing season (for Acer platanoides + 7.7 days/decade; Betula pendula + 3.3 days/decade). Since 1990, it has been common that many phases have begun sooner (particularly spring phases), whilst abiotic autumn phases have been characterised by late years. This study has shown that significant seasonal changes have taken place across the Latvian landscape due to climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials (data transparency)

The data are freely available to all interested. The data set is available at https://zenodo.org/repository, https://doi.org/10.5281/zenodo.3982086.

References

  • Ahas R (1999) Long-term phyto-, ornitho- and ichthyophenological time-series analyses in Estonia. Int J Biometeorol 42:119–123

    Article  Google Scholar 

  • Ahas R, Aasa A (2006) The effects of climate change on the phenology of selected Estonian plant, bird and fish populations. Int J Biometeorol 51:17–26. https://doi.org/10.1007/s00484-006-0041-z

    Article  Google Scholar 

  • Ahas R, Aasa A, Menzel A, Fedotova VG, Scheifinger H (2002) Changes in European spring phenology. Int J Climatol 22(22):1727–1738. https://doi.org/10.1002/joc.818

    Article  Google Scholar 

  • Ahas R, Aasa A, Silm S (2005) Seasonal indicators and seasons of Estonian landscapes. Landsc Res 30:173–191. https://doi.org/10.1080/01426390500044333

    Article  Google Scholar 

  • Apsite E, Rudlapa I, Latkovska I, Elferts D (2013) Changes in Latvian river discharge regime at the turn of the century. Hydrol Res 44:554–569. https://doi.org/10.2166/nh.2012.007

    Article  Google Scholar 

  • BACC II Author Team (2015) Second assessment of climate change for the Baltic Sea basin. Regional climate studies

  • Bertin RI (2008) Plant phenology and distribution in relation to recent climate change. J Torrey Bot Soc 135:126–146. https://doi.org/10.3159/07-rp-035r.1

    Article  Google Scholar 

  • Core Team R (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Dai J, Xu Y, Wang H, Alatalo J, Tao Z, Ge Q (2019) Variations in the temperature sensitivity of spring leaf phenology from 1978 to 2014 in Mudanjiang, China. Int J Biometeorol 63:569–577. https://doi.org/10.1007/s00484-017-1489-8

    Article  Google Scholar 

  • Diez JM, Ibáñez I, Miller-Rushing AJ, Mazer SJ, Crimmins TM, Crimmins MA, Bertelsen CD, Inouye DW (2012) Forecasting phenology: from species variability to community patterns. Ecol Lett 15:545–553. https://doi.org/10.1111/j.1461-0248.2012.01765.x

    Article  Google Scholar 

  • Forrest J, Miller-Rushing AJ (2010) Toward a synthetic understanding of the role of phenology in ecology and evolution. Philos Trans R Soc B Biol Sci 365:3101–3112. https://doi.org/10.1098/rstb.2010.0145

    Article  Google Scholar 

  • Gallinat AS, Primack RB, Wagner DL (2015) Autumn, the neglected season in climate change research. Trends Ecol Evol 30:169–176. https://doi.org/10.1016/j.tree.2015.01.004

    Article  Google Scholar 

  • Gill AL, Gallinat AS, Sanders-DeMott R, Rigden AJ, Short Gianotti DJ, Mantooth JA, Templer PH (2015) Changes in autumn senescence in northern hemisphere deciduous trees: a meta-analysis of autumn phenology studies. Ann Bot 116:875–888. https://doi.org/10.1093/aob/mcv055

    Article  CAS  Google Scholar 

  • Hegland SJ, Nielsen A, Lázaro A, Bjerknes AL, Totland Ø (2009) How does climate warming affect plant-pollinator interactions? Ecol Lett 12:184–195. https://doi.org/10.1111/j.1461-0248.2008.01269.x

    Article  Google Scholar 

  • Helama S, Tolvanen A, Karhu J, Poikolainen J, Kubin E (2020) Finnish National Phenological Network 1997–2017: from observations to trend detection. Int J Biometeorol 64:1783–1793. https://doi.org/10.1007/s00484-020-01961-6

    Article  Google Scholar 

  • Hoegh-Guldberg O, Jacob D, Taylor M, Bindi M, Brown S, Camilloni I, Diedhiou A, Djalante R, Ebi KL, Engelbrecht F, Guiot J, Hijioka Y, Mehrotra S, Payne A, Seneviratne SI, Thomas A, Warren R, GZ (2018) Impacts of 1.5C Global Warming on Natural and Human Systems. In: Masson-Delmotte V, Zhai P, Pörtner H-O, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Péan C, Pidcock R, Connors S, Matthews JBR, Chen Y, Zhou X, Gomis MI, Lonnoy E, Maycock T, Tignor M, TW (eds) Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change in press

    Google Scholar 

  • Hufkens K, Basler D, Milliman T, Melaas EK, Richardson AD (2018) An integrated phenology modelling framework in R. Methods Ecol Evol 9:1276–1285. https://doi.org/10.1111/2041-210X.12970

    Article  Google Scholar 

  • Ibáñez I, Primack RB, Miller-Rushing AJ, Ellwood E, Higuchi H, Lee SD, Kobori H, Silander JA (2010) Forecasting phenology under global warming. Philos Trans R Soc B Biol Sci 365:3247–3260. https://doi.org/10.1098/rstb.2010.0120

    Article  Google Scholar 

  • Jaagus J, Sepp M, Tamm T, Järvet A, Mõisja K (2017) Trends and regime shifts in climatic conditions and river runoff in Estonia during 1951–2015. Earth Syst Dynam 8:963–976

    Article  Google Scholar 

  • Jin H, Jönsson AM, Olsson C, Lindström J, Jönsson P, Eklundh L (2019) New satellite-based estimates show significant trends in spring phenology and complex sensitivities to temperature and precipitation at northern European latitudes. Int J Biometeorol 63:763–775. https://doi.org/10.1007/s00484-019-01690-5

    Article  Google Scholar 

  • Juknys R, Žeimavičius K, Sujetovienė G, Gustainytė J (2012) Response of tree seasonal development to climate warming. Pol J Environ Stud 21:107–113

    Google Scholar 

  • Juknys R, Velička R, Kanapickas A, Kriaučiūnienė Z, Masilionytė L, Vagusevičienė I, Pupalienė R, Klepeckas M, Sujetovienė G (2017) Projecting the impact of climate change on phenology of winter wheat in northern Lithuania. Int J Biometeorol 61:1–11. https://doi.org/10.1007/s00484-017-1360-y

    Article  Google Scholar 

  • Kalvane G, Romanovskaja D, Briede A, Bakšiene E (2009) Influence of climate change on phenological phases in Latvia and Lithuania. Clim Res 39:209–219. https://doi.org/10.3354/cr00813

    Article  Google Scholar 

  • Kalvāne G, Kalvāns A, Ģērmanis A (n.d.) Long term phenological data set of multi-taxonomic groups and agrarian activities, abiotical parameters from Northern Europa, Latvia. Earth Syst Sci Data

  • Kalvāns A, Bitāne M, Kalvāne G (2015) Forecasting plant phenology evaluating the phenological models for Betula pendula and Padus racemosa spring phases, Latvia. Int J Biometeorol 59:165–179

    Article  Google Scholar 

  • Klimienė A, Vainorienė R, Klimas R (2017) Phenological research of climate changes in the north part of Lithuania by the phenological garden of Šiauliai University. Int J Biometeorol 61:293–301. https://doi.org/10.1007/s00484-016-1211-2

    Article  Google Scholar 

  • Kolářová E, Nekovář J, Adamík P (2014) Long-term temporal changes in central European tree phenology (1946−2010) confirm the recent extension of growing seasons. Int J Biometeorol 58:1739–1748. https://doi.org/10.1007/s00484-013-0779-z

    Article  Google Scholar 

  • Körner C, Basler D (2010) Phenology under global warming. Science (80- ) 327:1461–1462. https://doi.org/10.1126/science.1186473

    Article  Google Scholar 

  • LEGMC (2020) Warmest winter in the history of meteorological observation in Latvia (in Latvian: Aizvadītā ziema bija siltākā un ar sniegu nabadzīgākā ziema vēsturē). https://www.meteo.lv/jaunumi/laika-apstakli/aizvadita-ziema-bija-siltaka-un-ar-sniegu-nabadzigaka-ziema-vesture?id=2226&cid=100. Accessed 5 May 2020

  • Marx A, Bastrup-Birk A, Louwagie G, Frank W-L (2017) Climate change, impacts and vulnerability in Europe 2016. European Environment Agency

  • Mehdipoor H, Zurita-Milla R, Augustijn EW, Izquierdo-Verdiguier E (2020) Exploring differences in spatial patterns and temporal trends of phenological models at continental scale using gridded temperature time-series. Int J Biometeorol 64:409–421. https://doi.org/10.1007/s00484-019-01826-7

    Article  Google Scholar 

  • Meier U (2001) Growth stages of mono-and dicotyledonous plants BBCH monograph edited by Uwe Meier Federal Biological Research Centre for agriculture and forestry, 2nd. Federal Biological Research Centre for Agriculture and Forestry

  • Meier U, Bleiholder H, Buhr L et al (2009) The BBCH system to coding the phenological growth stages of plants – history and publications. J FÜR Kult 61:41–52

    Google Scholar 

  • Menzel A, Sparks TH, Estrella N et al (2006) European phenological response to climate change matches the warming pattern. Glob Chang Biol 12:1969–1976. https://doi.org/10.1111/j.1365-2486.2006.01193.x

    Article  Google Scholar 

  • Menzel A, Yuan Y, Matiu M, Sparks T, Scheifinger H, Gehrig R, Estrella N (2020) Climate change fingerprints in recent European plant phenology. Glob Chang Biol 26:2599–2612. https://doi.org/10.1111/gcb.15000

    Article  Google Scholar 

  • Morin X, Chuine I (2014) Will tree species experience increased frost damage due to climate change because of changes in leaf phenology? Can J For Res 44:1555–1565. https://doi.org/10.1139/cjfr-2014-0282

    Article  Google Scholar 

  • Ovaskainen O, Skorokhodova S, Yakovleva M, Sukhov A, Kutenkov A, Kutenkova N, Shcherbakov A, Meyke E, Delgado MM (2013) Community-level phenological response to climate change. Proc Natl Acad Sci U S A 110:13434–13439. https://doi.org/10.1073/pnas.1305533110

    Article  Google Scholar 

  • Pearson KD (2019) A new method and insights for estimating phenological events from herbarium specimens. Appl Plant Sci 7:1–7. https://doi.org/10.1002/aps3.1224

    Article  Google Scholar 

  • Rather RN, Wani AA, Kashtwari M, Beigh ZA (2018) Climate change phenological shifts due to climate change and. Clim Chang 4:80–86

    Google Scholar 

  • Romanovskaja D, Bakšienė E (2007) Influence of the thermal mode on seasonal phenological phenomena in Lithuania. EKOLOGIJA 53:15–20

    Google Scholar 

  • Romanovskaja D, Bakšienė E (2020) The influence of climate change on plant phenological phases in Lithuania (in Lithuanian, Klimato kaitos įtaka augalų fenologinėms fazėms Lietuvoje ). Vilnius Univ Proc 10:143

    Google Scholar 

  • Rutishauser T, Jeanneret F, Brügger R, Brugnara Y, Röthlisberger C, Bernasconi A, Bangerter P, Portenier C, Villiger L, Lehmann D, Meyer L, Messerli B, Brönnimann S (2019) The BernClim plant phenological data set from the canton of Bern (Switzerland) 1970-2018. Earth Syst Sci Data 11:1645–1654. https://doi.org/10.5194/essd-11-1645-2019

    Article  Google Scholar 

  • Schleip C, Sparks TH, Estrella N, Menzel A (2009) Spatial variation in onset dates and trends in phenology across Europe. Clim Res 39:249–260. https://doi.org/10.3354/cr00830

    Article  Google Scholar 

  • Sparks TH, Menzel A (2002) Observed changes in seasons: an overview. Int J Climatol 22:1715–1725. https://doi.org/10.1002/joc.821

    Article  Google Scholar 

  • Sujetoviene G, Velička R, Kanapickas A et al (2018) Climate-change-related long-term historical and projected changes to spring barley phenological development in Lithuania. J Agric Sci 156:1061–1069. https://doi.org/10.1017/S0021859618000904

    Article  Google Scholar 

  • Usui T, Butchart SHM, Phillimore AB (2017) Temporal shifts and temperature sensitivity of avian spring migratory phenology: a phylogenetic meta-analysis. J Anim Ecol 86:250–261. https://doi.org/10.1111/1365-2656.12612

    Article  Google Scholar 

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395. https://doi.org/10.1038/416389a

    Article  CAS  Google Scholar 

  • Yost JM, Pearson KD, Alexander J et al (2019) The California phenology collections network: using digital images to investigate phenological change in a biodiversity hotspot. Madroño 66(4):130–141

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to Ivonna Tokere for the digitization of the historical data; Andris Ģērmanis for maintaining the phenological network and for data collection; and all volunteers—citizen-scientists—for the data collection through the decades.

This study was carried out within the framework of the Impact of Climate Change on Phytophenological Phases and Related Risks in the Baltic Region (No. 1.1.1.2/VIAA/2/18/265) ERDF project and the Climate change and sustainable use of natural resources institutional research grant of the University of Latvia (No. AAP2016/B041//ZD2016/AZ03).

Funding

This study was funded by the Impact of Climate Change on Phytophenological Phases and Related Risks in the Baltic Region ERDF project (1.1.1.2/VIAA/2/18/265) and an institutional research grant of the University of Latvia: Climate change and sustainable use of natural resources (No. AAP2016/B041//ZD2016/AZ03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunta Kalvāne.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Code availability (software application or custom code)

‘Not applicable’.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalvāne, G., Kalvāns, A. Phenological trends of multi-taxonomic groups in Latvia, 1970–2018. Int J Biometeorol 65, 895–904 (2021). https://doi.org/10.1007/s00484-020-02068-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-020-02068-8

Keywords

Navigation