Skip to main content
Log in

miRNA expression in PCOS: unveiling a paradigm shift toward biomarker discovery

  • Review
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Polycystic ovary syndrome (PCOS) is a complex endocrine disorder that affects a substantial percentage of women, estimated at around 9–21%. This condition can lead to anovulatory infertility in women of childbearing age and is often accompanied by various metabolic disturbances, including hyperandrogenism, insulin resistance, obesity, type-2 diabetes, and elevated cholesterol levels. The development of PCOS is influenced by a combination of epigenetic alterations, genetic mutations, and changes in the expression of non-coding RNAs, particularly microRNAs (miRNAs). MicroRNAs, commonly referred to as non-coding RNAs, are approximately 22 nucleotides in length and primarily function in post-transcriptional gene regulation, facilitating mRNA degradation and repressing translation. Their dynamic expression in different cells and tissues contributes to the regulation of various biological and cellular pathways. As a result, they have become pivotal biomarkers for various diseases, including PCOS, demonstrating intricate associations with diverse health conditions. The aberrant expression of miRNAs has been detected in the serum of women with PCOS, with overexpression and dysregulation of these miRNAs playing a central role in the atypical expression of endocrine hormones linked to PCOS. This review takes a comprehensive approach to explore the upregulation and downregulation of various miRNAs present in ovarian follicular cells, granulosa cells, and theca cells of women diagnosed with PCOS. Furthermore, it discusses the potential for a theragnostic approach using miRNAs to better understand and manage PCOS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

This review paper is based on data from published articles and is independent of any patient involvement.

References

  1. Bulsara J, Patel P, Soni A, Acharya S (2021) A review: brief insight into polycystic ovarian syndrome. Endocr Metab Sci 3:100085. https://doi.org/10.1016/J.ENDMTS.2021.100085

    Article  CAS  Google Scholar 

  2. Broekmans FJ, Visser JA, Laven JSE, Broer SL, Themmen APN, Fauser BC (2008) Anti-Müllerian hormone and ovarian dysfunction. Trends Endocrinol Metab 19(9):340–347. https://doi.org/10.1016/J.TEM.2008.08.002

    Article  CAS  PubMed  Google Scholar 

  3. Sadeghi HM, Adeli I, Calina D, Docea AO, Mousavi T, Daniali M, Nikfar S, Tsatsakis A, Abdollahi M (2022) Polycystic ovary syndrome: a comprehensive review of pathogenesis, management, and drug repurposing. Int J Mol Sci 23(2):583. https://doi.org/10.3390/IJMS23020583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Himelein MJ, Thatcher SS (2006) Polycystic ovary syndrome and mental health: a review. Obstet Gynecol Surv 61(11):723–732. https://doi.org/10.1097/01.OGX.0000243772.33357.84

    Article  PubMed  Google Scholar 

  5. Toyota M, Suzuki H, Sasaki Y, Maruyama R, Imai K, Shinomura Y, Tokino T (2008) Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Can Res 68(11):4123–4132. https://doi.org/10.1158/0008-5472.CAN-08-0325

    Article  CAS  Google Scholar 

  6. Iervolino M, Lepore E, Forte G, Laganà AS, Buzzaccarini G, Unfer V (2021) Natural molecules in the management of Polycystic Ovary Syndrome (PCOS): an analytical review. Nutrients 13(5). https://doi.org/10.3390/NU13051677

  7. Lawrie CH, Saunders NJ, Soneji S, Palazzo S, Dunlop HM, Cooper CDO, Brown PJ, Troussard X, Mossafa H, Enver T, Pezzella F, Boultwood J, Wainscoat JS, Hatton CSR (2008) MicroRNA expression in lymphocyte development and malignancy. Leukemia 22(7):1440–1446. https://doi.org/10.1038/sj.leu.2405083

    Article  CAS  PubMed  Google Scholar 

  8. Flynt AS, Lai EC (2008) Biological principles of microRNA-mediated regulation: shared themes amid diversity. Nat Rev Genet 9(11):831–842. https://doi.org/10.1038/nrg2455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Long W, Zhao C, Ji C, Ding H, Cui Y, Guo X, Shen R, Liu J (2014) Characterization of Serum MicroRNAs profile of PCOS and identification of novel non-invasive biomarkers. Cell Physiol Biochem 33(5):1304–1315. https://doi.org/10.1159/000358698

    Article  CAS  PubMed  Google Scholar 

  10. Jiang L, Huang J, Li L, Chen Y, Chen X, Zhao X, Yang D (2015) MicroRNA-93 promotes ovarian granulosa cells proliferation through targeting CDKN1A in polycystic ovarian syndrome. J Clin Endocrinol Metab 100(5):E729–E738. https://doi.org/10.1210/JC.2014-3827

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sørensen AE, Wissing ML, Salö S, Englund ALM, Dalgaard LT (2014) MicroRNAs related to polycystic ovary syndrome (PCOS). Genes 5(3). https://doi.org/10.3390/genes5030684

  12. Sørensen AE, Wissing ML, Englund ALM, Dalgaard LT (2016) MicroRNA species in follicular fluid associating with polycystic ovary syndrome and related intermediary phenotypes. J Clin Endocrinol Metab 101(4). https://doi.org/10.1210/jc.2015-3588

  13. da Silveira JC, Veeramachaneni DNR, Winger QA, Carnevale EM, Bouma GJ (2012) Cell-secreted vesicles in equine ovarian follicular fluid contain mirnas and proteins: a possible new form of cell communication within the ovarian follicle. Biol Reprod 86(3):71–72. https://doi.org/10.1095/BIOLREPROD.111.093252/2530661

    Article  PubMed  Google Scholar 

  14. Qasemi M, Amidi F (2020) Extracellular microRNA profiling in human follicular fluid: new biomarkers in female reproductive potential. J Assist Reprod Genet 37(8). https://doi.org/10.1007/s10815-020-01860-0

  15. Roth LW, McCallie B, Alvero R, Schoolcraft WB, Minjarez D, Katz-Jaffe MG (2014) Altered microRNA and gene expression in the follicular fluid of women with polycystic ovary syndrome. J Assist Reprod Genet 31(3):355. https://doi.org/10.1007/S10815-013-0161-4

    Article  PubMed  PubMed Central  Google Scholar 

  16. Diez-Fraile A, Lammens T, Tilleman K, Witkowski W, Verhasselt B, de Sutter P, Benoit Y, Espeel M, D’Herde K (2014) Age-associated differential microRNA levels in human follicular fluid reveal pathways potentially determining fertility and success of in vitro fertilization. Huma Fertil 17(2). https://doi.org/10.3109/14647273.2014.897006

  17. Sang Q, Yao Z, Wang H, Feng R, Wang H, Zhao X, Xing Q, Jin L, He L, Wu L, Wang L (2013) Identification of microRNAs in human follicular fluid: characterization of microRNAs that govern steroidogenesis in vitro and are associated with polycystic ovary syndrome in vivo. J Clin Endocrinol Metab 98(7):3068–3079. https://doi.org/10.1210/JC.2013-1715

    Article  CAS  PubMed  Google Scholar 

  18. Butler AE, Ramachandran V, Hayat S, Dargham SR, Cunningham TK, Benurwar M, Sathyapalan T, Najafi-Shoushtari SH, Atkin SL (2019) Expression of microRNA in follicular fluid in women with and without PCOS. Sci Rep 9(1). https://doi.org/10.1038/s41598-019-52856-5

  19. Scalici E, Traver S, Mullet T, Molinari N, Ferrières A, Brunet C, Belloc S, Hamamah S (2016) Circulating microRNAs in follicular fluid, powerful tools to explore in vitro fertilization process. Sci Rep 6. https://doi.org/10.1038/srep24976

  20. Tu J, Cheung AHH, Chan CLK, Chan WY (2019) The role of microRNAs in ovarian granulosa cells in health and disease. Front Endocrinol 10(MAR). https://doi.org/10.3389/fendo.2019.00174

  21. Naji M, Nekoonam S, Aleyasin A, Arefian E, Mahdian R, Azizi E, Shabani Nashtaei M, Amidi F (2018) Expression of miR-15a, miR-145, and miR-182 in granulosa-lutein cells, follicular fluid, and serum of women with polycystic ovary syndrome (PCOS). Arch Gynecol Obstet 297(1):221–231. https://doi.org/10.1007/S00404-017-4570-Y

    Article  CAS  PubMed  Google Scholar 

  22. Mu L, Sun X, Tu M, Zhang D (2021) Non-coding RNAs in polycystic ovary syndrome: a systematic review and meta-analysis. Reprod Biol Endocrinol 19(1). https://doi.org/10.1186/S12958-020-00687-9

  23. Cai G, Ma X, Chen B, Huang Y, Liu S, Yang H, Zou W (2017) MicroRNA-145 negatively regulates cell proliferation through targeting IRS1 in isolated ovarian granulosa cells from patients with polycystic ovary syndrome. Reprod Sci (Thousand Oaks, Calif) 24(6):902–910. https://doi.org/10.1177/1933719116673197

    Article  CAS  Google Scholar 

  24. Luo Y, Cui C, Han X, Wang Q, Zhang C (2021) The role of miRNAs in polycystic ovary syndrome with insulin resistance. J Assist Reprod Genet 38(2):289. https://doi.org/10.1007/S10815-020-02019-7

    Article  PubMed  PubMed Central  Google Scholar 

  25. Vitale SG, Fulghesu AM, Mikuš M, Watrowski R, D’Alterio MN, Lin L-T, Shah M, Reyes-Muñoz E, Sathyapalan T, Angioni S (2022) The translational role of miRNA in polycystic ovary syndrome: from bench to bdside—a systematic literature review. Biomedicines 10:1816. https://doi.org/10.3390/biomedicines10081816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen B, Xu P, Wang J, Zhang C (2019) The role of MiRNA in polycystic ovary syndrome (PCOS). Gene 706. https://doi.org/10.1016/j.gene.2019.04.082

  27. Chen Z, Ou H, Wu H, Wu P, Mo Z (2019) Role of microRNA in the pathogenesis of polycystic ovary syndrome. DNA Cell Biol 38(8). https://doi.org/10.1089/dna.2019.4622

  28. Pei CZ, Jin L, Baek KH (2021) Pathogenetic analysis of polycystic ovary syndrome from the perspective of omics. Biomed Pharmacother 142. https://doi.org/10.1016/j.biopha.2021.112031

  29. Hossain MM, Cao M, Wang Q, Kim JY, Schellander K, Tesfaye D, Tsang BK (2013) Altered expression of miRNAs in a dihydrotestosterone-induced rat PCOS model. https://doi.org/10.1186/1757-2215-6-36

  30. Gong Z, Yang J, Bai S, Wei S (2020) MicroRNAs regulate granulosa cells apoptosis and follicular development – a review. Asian-Australas J Anim Sci 33(11):1714–1724. https://doi.org/10.5713/ajas.19.0707

    Article  CAS  PubMed  Google Scholar 

  31. Abdalla M, Deshmukh H, Atkin SL, Sathyapalan T (2020) miRNAs as a novel clinical biomarker and therapeutic targets in polycystic ovary syndrome (PCOS): a review. Life Sci 259. https://doi.org/10.1016/j.lfs.2020.118174

  32. Fiedler SD, Carletti MZ, Hong X, Christenson LK (2008) Hormonal regulation of microRNA expression in periovulatory mouse mural granulosa cells. Biol Reprod 79(6). https://doi.org/10.1095/biolreprod.108.069690

  33. Baley J, Li J (2012) MicroRNAs and ovarian function. J Ovarian Res 5(1). https://doi.org/10.1186/1757-2215-5-8

  34. Dompe C, Kulus M, Stefańska K, Kranc W, Chermuła B, Bryl R, Pieńkowski W, Nawrocki MJ, Petitte JN, Stelmach B, Mozdziak P, Jeseta M, Pawelczyk L, Jaśkowski JM, Piotrowska-Kempisty H, Spaczyński RZ, Nowicki M, Kempisty B (2021) Human granulosa cells—stemness properties, molecular cross-talk and follicular angiogenesis. Cells 10(6):1396. https://doi.org/10.3390/cells10061396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Robinson CL, Zhang L, Schütz LF, Totty ML, Spicer LJ (2018) MicroRNA 221 expression in theca and granulosa cells: Hormonal regulation and function1. J Anim Sci 96(2):641. https://doi.org/10.1093/jas/skx069

    Article  PubMed  PubMed Central  Google Scholar 

  36. Arcidiacono B, Iiritano S, Nocera A, Possidente K, Nevolo MT, Ventura V, Foti D, Chiefari E, Brunetti A (2012) Insulin resistance and cancer risk: an overview of the pathogenetic mechanisms. Exp Diabet Res 2012. https://doi.org/10.1155/2012/789174

  37. Mcallister JM, Han AX, Modi BP, Teves ME, Mavodza GR, Anderson ZL, Shen T, Christenson LK, Archer KJ, Strauss JF (2019) MiRNA profiling reveals miRNA-130b-3p mediates DENND1A variant 2 expression and androgen biosynthesis. Endocrinology 160(8):1964–1981. https://doi.org/10.1210/en.2019-00013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. McAllister JM, Modi B, Miller BA, Biegler J, Bruggeman R, Legro RS, Strauss JF (2014) Overexpression of a DENND1A isoform produces a polycystic ovary syndrome theca phenotype. Proc Natl Acad Sci USA 111(15):E1519. https://doi.org/10.1073/PNAS.1400574111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nelson-DeGrave VL, Wickenheisser JK, Cockrell JE, Wood JR, Legro RS, Strauss JF, McAllister JM (2004) Valproate potentiates androgen biosynthesis in human ovarian theca cells. Endocrinology 145(2):799–808. https://doi.org/10.1210/EN.2003-0940

    Article  CAS  PubMed  Google Scholar 

  40. Rojas J, Chávez M, Olivar L, Rojas M, Morillo J, Mejías J, Calvo M, Bermúdez V (2014) Polycystic ovary syndrome, insulin resistance, and obesity: navigating the pathophysiologic labyrinth. Int J Med 2014:1–17. https://doi.org/10.1155/2014/719050

    Article  Google Scholar 

  41. Ho CKM, Wood JR, Stewart DR, Ewens K, Ankener W, Wickenheisser J, Nelson-Degrave V, Zhang Z, Legro RS, Dunaif A, McAllister JM, Spielman R, Strauss JF (2005) Increased transcription and increased messenger ribonucleic acid (mRNA) stability contribute to increased GATA6 mRNA abundance in polycystic ovary syndrome theca cells. J Clin Endocrinol Metab 90(12):6596–6602. https://doi.org/10.1210/JC.2005-0890

    Article  CAS  PubMed  Google Scholar 

  42. Lin L, Du T, Huang J, Huang LL, Yang DZ (2015) Identification of differentially expressed MicroRNAs in the ovary of polycystic ovary syndrome with hyperandrogenism and insulin resistance. Chin Med J 128(2):169. https://doi.org/10.4103/0366-6999.149189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sun T, Yang M, Kantoff P, Lee GSM (2009) Role of microRNA-221/-222 in cancer development and progression. Cell Cycle 8(15):2315–2316. https://doi.org/10.4161/CC.8.15.9221

    Article  CAS  PubMed  Google Scholar 

  44. Liu S, Zhang X, Shi C, Lin J, Chen G, Wu B, Wu L, Shi H, Yuan Y, Zhou W, Sun Z, Dong X, Wang J (2015) Altered microRNAs expression profiling in cumulus cells from patients with polycystic ovary syndrome. J Transl Med 13(1):238. https://doi.org/10.1186/S12967-015-0605-Y

    Article  PubMed  PubMed Central  Google Scholar 

  45. Alberti KGMM, Zimmet P, Shaw J (2005) The metabolic syndrome–a new worldwide definition. Lancet (London, England) 366(9491):1059–1062. https://doi.org/10.1016/S0140-6736(05)67402-8

    Article  PubMed  Google Scholar 

  46. Grundy SM, Brewer HB, Cleeman JI, Smith SC, Lenfant C (2004) Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation 109(3):433–438. https://doi.org/10.1161/01.CIR.0000111245.75752.C6

    Article  PubMed  Google Scholar 

  47. Deiuliis JA (2016) MicroRNAs as regulators of metabolic disease: pathophysiologic significance and emerging role as biomarkers and therapeutics. Int J Obes 40(1):88–101. https://doi.org/10.1038/IJO.2015.170

    Article  CAS  Google Scholar 

  48. Alexander R, Lodish H, Sun L (2011) MicroRNAs in adipogenesis and as therapeutic targets for obesity. Expert Opin Ther Targets 15(5):623–636. https://doi.org/10.1517/14728222.2011.561317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Duan M, Du X, Ren G, Zhang Y, Zheng Y, Sun S, Zhang J (2018) Obovatol inhibits the growth and aggressiveness of tongue squamous cell carcinoma through regulation of the EGF-mediated JAK-STAT signaling pathway. Mol Med Rep 18(2):1651–1659. https://doi.org/10.3892/MMR.2018.9078

    Article  CAS  PubMed  Google Scholar 

  50. Jean-François L, Derghal A, Mounien L (2019) MicroRNAs in obesity and related metabolic disorders. Cells 8(8):859. https://doi.org/10.3390/CELLS8080859

    Article  Google Scholar 

  51. Belgardt BF, Ahmed K, Spranger M, Latreille M, Denzler R, Kondratiuk N, Von Meyenn F, Villena FN, Herrmanns K, Bosco D, Kerr-Conte J, Pattou F, Rülicke T, Stoffel M (2015) The microRNA-200 family regulates pancreatic beta cell survival in type 2 diabetes. Nat Med 21(6):619–627. https://doi.org/10.1038/NM.3862

    Article  CAS  PubMed  Google Scholar 

  52. Latreille M, Hausser J, Stützer I, Zhang Q, Hastoy B, Gargani S, Kerr-Conte J, Pattou F, Zavolan M, Esguerra JLS, Eliasson L, Rülicke T, Rorsman P, Stoffel M (2014) MicroRNA-7a regulates pancreatic β cell function. J Clin Investig 124(6):2722–2735. https://doi.org/10.1172/JCI73066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Colangelo T, Fucci A, Votino C, Sabatino L, Pancione M, Laudanna C, Binaschi M, Bigioni M, Alberto Maggi C, Parente D, Forte N, Colantuoni V (2013) MicroRNA-130b promotes tumor development and is associated with poor prognosis in colorectal cancer. Neoplasia (New York, N.Y.) 15(9):1218–1231. https://doi.org/10.1593/NEO.13998

    Article  Google Scholar 

  54. Nishimura K, Sano M, Ohtaka M, Furuta B, Umemura Y, Nakajima Y, Ikehara Y, Kobayashi T, Segawa H, Takayasu S, Sato H, Motomura K, Uchida E, Kanayasu-Toyoda T, Asashima M, Nakauchi H, Yamaguchi T, Nakanishia M (2011) Development of defective and persistent Sendai virus vector: a unique gene delivery/expression system ideal for cell reprogramming. J Biol Chem 286(6):4760–4771. https://doi.org/10.1074/JBC.M110.183780

    Article  CAS  PubMed  Google Scholar 

  55. Lee J, Padhye A, Sharma A, Song G, Miao J, Mo YY, Wang L, Kemper JK (2010) A pathway involving farnesoid X receptor and small heterodimer partner positively regulates hepatic sirtuin 1 levels via microRNA-34a inhibition. J Biol Chem 285(17):12604–12611. https://doi.org/10.1074/JBC.M109.094524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Choi SE, Fu T, Seok S, Kim DH, Yu E, Lee KW, Kang Y, Li X, Kemper B, Kemper JK (2013) Elevated microRNA-34a in obesity reduces NAD+ levels and SIRT1 activity by directly targeting NAMPT. Aging Cell 12(6):1062–1072. https://doi.org/10.1111/ACEL.12135

    Article  CAS  PubMed  Google Scholar 

  57. Karbiener M, Neuhold C, Opriessnig P, Prokesch A, Bogner-Strauss JG, Scheideler M (2011) MicroRNA-30c promotes human adipocyte differentiation and co-represses PAI-1 and ALK2. RNA Biol 8(5):850–860. https://doi.org/10.4161/RNA.8.5.16153

    Article  CAS  PubMed  Google Scholar 

  58. Ouaamari AE, Baroukh N, Martens GA, Lebrun P, Pipeleers D, Van Obberghen E (2008) miR-375 targets 3′-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic beta-cells. Diabetes 57(10):2708–2717. https://doi.org/10.2337/DB07-1614

    Article  PubMed  PubMed Central  Google Scholar 

  59. Poy MN, Hausser J, Trajkovski M, Braun M, Collins S, Rorsman P, Zavolan M, Stoffel M (2009) miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc Natl Acad Sci USA 106(14):5813–5818. https://doi.org/10.1073/PNAS.0810550106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Song S, Zhou J, He S, Zhu D, Zhang Z, Zhao H, Wang Y, Li D (2013) Expression levels of microRNA-375 in pancreatic cancer. Biomed Rep 1(3):393–398. https://doi.org/10.3892/BR.2013.88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, Feldmann G, Yamakuchi M, Ferlito M, Lowenstein CJ, Arking DEE, Beer MA, Maitra A, Mendell JT (2007) Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 26(5):745–752. https://doi.org/10.1016/J.MOLCEL.2007.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang B, Li D, Kovalchuk I, Apel IJ, Chinnaiyan AM, Wóycicki RK, Cantor CR, Kovalchuk O (2018) miR-34a directly targets tRNAiMet precursors and affects cellular proliferation, cell cycle, and apoptosis. Proc Natl Acad Sci USA 115(28):7392–7397. https://doi.org/10.1073/PNAS.1703029115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Coleman CB, Lightell DJ, Moss SC, Bates M, Parrino PE, Woods TC (2013) Elevation of miR-221 and -222 in the internal mammary arteries of diabetic subjects and normalization with metformin. Mol Cell Endocrinol 374(1–2):125–129. https://doi.org/10.1016/J.MCE.2013.04.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tang W, Lv B, Yang B, Chen Y, Yuan F, Ma L, Chen S, Zhang S, Xia J (2019) TREM2 acts as a tumor suppressor in hepatocellular carcinoma by targeting the PI3K/Akt/β-catenin pathway. Oncogenesis 8(2):9. https://doi.org/10.1038/S41389-018-0115-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shi C, Kong X, Huang Y, Yu PS, Wu B, Shi C, Huang Y, Wu B, Kong XN, Yu PS (2013) HeteSim: a general framework for relevance measure in heterogeneous networks DRAFT IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. IEEE Trans Knowl Data Eng 6(1). http://pages.cs.wisc.edu/

  66. Liu X, Wang S, Meng F, Wang J, Zhang Y, Dai E, Yu X, Li X, Jiang W (2013) SM2miR: a database of the experimentally validated small molecules’ effects on microRNA expression. Bioinformatics (Oxford, England) 29(3):409–411. https://doi.org/10.1093/BIOINFORMATICS/BTS698

    Article  CAS  PubMed  Google Scholar 

  67. Qu J, Chen X, Sun YZ, Zhao Y, Cai SB, Ming Z, You ZH, Li JQ (2019) In silico prediction of small molecule-miRNA associations based on the HeteSim algorithm. Mol Ther Nucleic Acids 14:274–286. https://doi.org/10.1016/J.OMTN.2018.12.002

    Article  CAS  PubMed  Google Scholar 

  68. Lashen H (2010) Role of metformin in the management of polycystic ovary syndrome. Ther Adv Endocrinol Metab 1(3):117–128. https://doi.org/10.1177/2042018810380215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lord JM, Flight IHK, Norman RJ (2003) Metformin in polycystic ovary syndrome: systematic review and meta-analysis. BMJ (Clinical Research Ed) 327(7421):951–955. https://doi.org/10.1136/BMJ.327.7421.951

    Article  CAS  PubMed  Google Scholar 

  70. Baran S, Api M, Goksedef BPC, Cetin A (2010) Comparison of metformin and clomiphene citrate therapy for induction of ovulation in the polycystic ovary syndrome. Arch Gynecol Obstet 282(4):439–443. https://doi.org/10.1007/S00404-010-1497-Y

    Article  CAS  PubMed  Google Scholar 

  71. Nestler JE (2008) Metformin in the treatment of infertility in polycystic ovarian syndrome: an alternative perspective. Fertil Steril 90(1):14–16. https://doi.org/10.1016/J.FERTNSTERT.2008.04.073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Capuani B, Pacifici F, Della-Morte D, Lauro D (2018) Glucagon like peptide 1 and MicroRNA in metabolic diseases: focusing on GLP1 action on miRNAs. Front Endocrinol 9:719. https://doi.org/10.3389/FENDO.2018.00719

    Article  Google Scholar 

  73. Radbakhsh S, Sathyapalan T, Banach M, Sahebkar A (2020) Incretins and microRNAs: Interactions and physiological relevance. Pharmacol Res 153:104662. https://doi.org/10.1016/J.PHRS.2020.104662

    Article  CAS  PubMed  Google Scholar 

  74. Sørensen AE, Udesen PB, Wissing ML, Englund ALM, Dalgaard LT (2016) MicroRNAs related to androgen metabolism and polycystic ovary syndrome. Chem Biol Interact 259(Pt A):8–16. https://doi.org/10.1016/J.CBI.2016.06.008

    Article  PubMed  Google Scholar 

  75. Wang Z, Qiao Y, Zhang J, Shi W, Zhang J (2017) Genome wide identification of microRNAs involved in fatty acid and lipid metabolism of Brassica napus by small RNA and degradome sequencing. Gene 619:61–70. https://doi.org/10.1016/J.GENE.2017.03.040

    Article  CAS  PubMed  Google Scholar 

  76. Rooda I, Hasan MM, Roos K, Viil J, Andronowska A, Smolander OP, Jaakma Ü, Salumets A, Fazeli A, Velthut-Meikas A (2020) Cellular, extracellular and extracellular vesicular miRNA profiles of pre-ovulatory follicles indicate signaling disturbances in polycystic ovaries. Int J Mol Sci 21(24):9550. https://doi.org/10.3390/ijms21249550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Dai A, Sun H, Fang T, Zhang Q, Wu S, Jiang Y, Ding L, Yan G, Hu Y (2013) MicroRNA-133b stimulates ovarian estradiol synthesis by targeting Foxl2. FEBS Lett 587(15):2474–2482. https://doi.org/10.1016/j.febslet.2013.06.023

    Article  CAS  PubMed  Google Scholar 

  78. Lee SY, Kang YJ, Kwon J, Nishi Y, Yanase T, Lee KA, Koong MK (2020) miR-4463 regulates aromatase expression and activity for 17β-estradiol synthesis in response to follicle-stimulating hormone. Clin Exp Reprod Med 47(3):194. https://doi.org/10.5653/cerm.2019.03412

    Article  PubMed  PubMed Central  Google Scholar 

  79. Sirotkin A, Ovcharenko D, Grossmann R, Lauková M, Mlynček M (2009) Identification of microRNAs controlling human ovarian cell steroidogenesis via a genome-scale screen. J Cell Physiol 219(2):415–420. https://doi.org/10.1002/jcp.21689

    Article  CAS  PubMed  Google Scholar 

  80. Yu C, Li M, Wang Y, Liu Y, Yan C, Pan J, Liu J, Cui S (2017) miR-375 mediates CRH signaling pathway in inhibiting E2 synthesis in porcine ovary. Reproduction 153(1):63–73. https://doi.org/10.1530/REP-16-0323

    Article  CAS  Google Scholar 

  81. Yin M, Wang X, Yao G, Lü M, Liang M, Sun Y, Sun F (2014) Transactivation of microRNA-320 by microRNA-383 regulates granulosa cell functions by targeting E2F1 and SF-1 proteins. J Biol Chem 289(26):18239–18257. https://doi.org/10.1074/jbc.M113.546044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

GR, NAK, DE, RAY, HH, DS, and NS wrote the manuscript and created the figures. MAK, SR, AMB, and WH drafted the manuscript. All authors have contributed to the manuscript and approved the submitted version.

Corresponding author

Correspondence to Gowhar Rashid.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Consent for publication

Not applicable.

Ethics approval and consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashid, G., Khan, N.A., Elsori, D. et al. miRNA expression in PCOS: unveiling a paradigm shift toward biomarker discovery. Arch Gynecol Obstet 309, 1707–1723 (2024). https://doi.org/10.1007/s00404-024-07379-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-024-07379-4

Keywords

Navigation