Skip to main content

Advertisement

Log in

Bioinformatics analysis of a disease-specific lncRNA–miRNA–mRNA regulatory network in recurrent spontaneous abortion (RSA)

  • Gynecologic Endocrinology and Reproductive Medicine
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Background

This study investigated the molecular mechanisms of long non-coding RNAs (lncRNAs) in RSA using the lncRNA–miRNA–mRNA regulatory network.

Methods

The present study obtained expression datasets of long non-coding RNAs (lncRNAs), messenger RNAs (mRNAs), and microRNAs (miRNAs) from blood samples of individuals with unexplained recurrent spontaneous abortion (RSA) and healthy controls. Differentially expressed lncRNAs (DELs), mRNAs (DEMs), and miRNAs (DEmiRs) were identified. A regulatory network comprising lncRNA, miRNA, and mRNA was constructed, and Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were conducted to analyze the biological functions of DEM. Also, a protein–protein interaction (PPI) network was made and key genes were identified.

Results

A total of 57 DELs, 212 DEmiRs, and 301 DEMs regarding RSA were identified. Later analysis revealed a lncRNA–miRNA–mRNA network comprising nine lncRNAs, 14 miRNAs, and 65 mRNAs. Then, the ceRNA network genes were subjected to functional enrichment and pathway analysis, which showed their association with various processes, such as cortisol and thyroid hormone synthesis and secretion, human cytomegalovirus infection, and parathyroid hormone synthesis. In addition, ten hub genes (ITGB3, GNAI2, GNAS, SRC, PLEC, CDC42, RHOA, RAC1, CTNND1, and FN1) were identified based on the PPI network results.

Conclusion

In summary, the outcomes of our study provided some data regarding the alteration genes involved in RSA pathogenic mechanism via the lncRNA–miRNA–mRNA network and reveal the possibility of identifying new lncRNAs and miRNAs as promising molecular biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The authors declare that all generated and analyzed data are included in the study.

References

  1. Practice Committee of the American Society for Reproductive Medicine (2012) Evaluation and treatment of recurrent pregnancy loss: a committee opinion. Fertil Steril 98(5):1103–1111

    Article  Google Scholar 

  2. Guo H et al (2020) Impacts of medroxyprogesterone acetate on oocytes and embryos: matched case-control study in women with stage III–IV ovarian endometriosis undergoing controlled ovarian hyperstimulation for in vitro fertilization. Ann Transl Med 8(6):377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Baek K-H, Lee E-J, Kim Y-S (2007) Recurrent pregnancy loss: the key potential mechanisms. Trends Mol Med 13(7):310–317

    Article  CAS  PubMed  Google Scholar 

  4. El Hachem H et al (2017) Recurrent pregnancy loss: current perspectives. Int J Women’s Health 9:331–345

    Article  Google Scholar 

  5. Sham A, Yiu M, Ho W (2010) Psychiatric morbidity following miscarriage in Hong Kong. Gener Hosp Psychiatry 32(3):284–293

    Article  Google Scholar 

  6. Heo MJ, Yun J, Kim SG (2019) Role of non-coding RNAs in liver disease progression to hepatocellular carcinoma. Arch Pharmacal Res 42:48–62

    Article  CAS  Google Scholar 

  7. Cava C, Bertoli G, Castiglioni I (2019) Portrait of tissue-specific coexpression networks of noncoding RNAs (miRNA and lncRNA) and mRNAs in normal tissues. Comput Math Methods Med 2019:902–9351

    Article  Google Scholar 

  8. Zhu K-P et al (2019) Analyzing the interactions of mRNAs and ncRNAs to predict competing endogenous RNA networks in osteosarcoma chemo-resistance. Mol Ther 27(3):518–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ala U (2020) Competing endogenous RNAs, non-coding RNAs and diseases: an intertwined story. Cells 9(7):1574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li L et al (2018) Integrated analysis of dysregulated long non-coding RNAs/microRNAs/mRNAs in metastasis of lung adenocarcinoma. J Transl Med 16:1–14

    Article  Google Scholar 

  11. Salmena L et al (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146(3):353–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Plotnikova O, Baranova A, Skoblov M (2019) Comprehensive analysis of human microRNA–mRNA interactome. Front Genet 10:933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. ESHRE Guideline Group on RPL. et al., 2023 ESHRE guideline: recurrent pregnancy loss: an update in 2022. Human Reprod Open 2023(1): p. hoad002.

  14. Harrow J et al (2012) GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res 22(9):1760–1774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liao Y, Smyth GK, Shi W (2019) The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res 47(8):e47–e47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ritchie ME et al (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43(7):e47–e47

    Article  PubMed  PubMed Central  Google Scholar 

  17. Karagkouni D et al (2020) DIANA-LncBase v3: indexing experimentally supported miRNA targets on non-coding transcripts. Nucleic Acids Res 48(D1):D101–D110

    CAS  PubMed  Google Scholar 

  18. Chen J et al (2021) LncSEA: a platform for long non-coding RNA related sets and enrichment analysis. Nucleic Acids Res 49(D1):D969–D980

    Article  CAS  PubMed  Google Scholar 

  19. Li J et al (2015) LncTar: a tool for predicting the RNA targets of long noncoding RNAs. Brief Bioinform 16(5):806–812

    Article  CAS  PubMed  Google Scholar 

  20. Ru Y et al (2014) The multiMiR R package and database: integration of microRNA–target interactions along with their disease and drug associations. Nucleic Acids Res 42(17):e133–e133

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  21. Cava C et al (2017) SpidermiR: an R/bioconductor package for integrative analysis with miRNA data. Int J Mol Sci 18(2):274

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gupta, P., Competing endogenous RNA (ceRNA): a new class of RNA working as miRNA sponges. Current Science, 2014: p. 823–830.

  23. Franz M et al (2023) Cytoscape. js 2023 update: a graph theory library for visualisation and analysis. Bioinformatics. https://doi.org/10.1093/bioinformatics/btad031

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kohl, M., S. Wiese, and B. Warscheid, Cytoscape: software for visualization and analysis of biological networks. Data mining in proteomics: from standards to applications, 2011: p. 291–303.

  25. Cozzolino M et al (2019) Ongoing pregnancies in patients with unexplained recurrent pregnancy loss: adverse obstetric outcomes. Hum Fertil 22(3):219–225

    Article  CAS  Google Scholar 

  26. Xu J et al (2019) Long noncoding RNA MIR17HG promotes colorectal cancer progression via miR-17-5pMIR17HG role in colorectal cancer. Can Res 79(19):4882–4895

    Article  CAS  Google Scholar 

  27. van Haaften G, Agami R (2010) Tumorigenicity of the miR-17-92 cluster distilled. Genes Dev 24(1):1–4

    Article  PubMed  PubMed Central  Google Scholar 

  28. Smith G et al (2011) Recurrent miscarriage is associated with a family history of ischaemic heart disease: a retrospective cohort study. BJOG Int J Obstetr Gynaecol 118(5):557–563

    Article  CAS  Google Scholar 

  29. Fu G et al (2013) MicroRNAs in human placental development and pregnancy complications. Int J Mol Sci 14(3):5519–5544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gu S et al (2022) Differential MicroRNA expression in porcine endometrium related to spontaneous embryo loss during early pregnancy. Int J Mol Sci 23(15):8157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Van Mourik MS, Macklon NS, Heijnen CJ (2009) Embryonic implantation: cytokines, adhesion molecules, and immune cells in establishing an implantation environment. J Leukoc Biol 85(1):4–19

    Article  PubMed  Google Scholar 

  32. Ng HH et al (2019) Relaxin and extracellular matrix remodeling: mechanisms and signaling pathways. Mol Cell Endocrinol 487:59–65

    Article  CAS  PubMed  Google Scholar 

  33. Goldsmith LT, Weiss G (2009) Relaxin in human pregnancy. Ann N Y Acad Sci 1160(1):130–135

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Ye J et al (2013) miRNA-27b targets vascular endothelial growth factor C to inhibit tumor progression and angiogenesis in colorectal cancer. PLoS ONE 8(4):e60687

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee J-J et al (2012) MiR-27b targets PPARγ to inhibit growth, tumor progression and the inflammatory response in neuroblastoma cells. Oncogene 31(33):3818–3825

    Article  CAS  PubMed  Google Scholar 

  36. Van Trappen PO, Pepper MS (2005) Lymphangiogenesis in human gynaecological cancers. Angiogenesis 8(2):137

    Article  PubMed  Google Scholar 

  37. Reed BG et al (2018) Estrogen-regulated miRNA-27b is altered by bisphenol A in human endometrial stromal cells. Reproduction (Cambridge, England) 156(6):559

    CAS  PubMed  Google Scholar 

  38. Zhu L, Liu Z (2021) Serum from patients with hypertension promotes endothelial dysfunction to induce trophoblast invasion through the miR-27b-3p/ATPase plasma membrane Ca 2+ transporting 1 axis. Mol Med Rep 23(5):1–10

    Article  Google Scholar 

  39. Nepomnaschy PA et al (2006) Cortisol levels and very early pregnancy loss in humans. Proc Natl Acad Sci 103(10):3938–3942

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wingfield J, Sapolsky R (2003) Reproduction and resistance to stress: when and how. J Neuroendocrinol 15(8):711–724

    Article  CAS  PubMed  Google Scholar 

  41. Rivier C, Rivest S (1991) Effect of stress on the activity of the hypothalamic-pituitary-gonadal axis: peripheral and central mechanisms. Biol Reprod 45(4):523–532

    Article  CAS  PubMed  Google Scholar 

  42. Norwitz ER, Schust DJ, Fisher SJ (2001) Implantation and the survival of early pregnancy. N Engl J Med 345(19):1400–1408

    Article  CAS  PubMed  Google Scholar 

  43. Blois SM et al (2004) Depletion of CD8+ cells abolishes the pregnancy protective effect of progesterone substitution with dydrogesterone in mice by altering the Th1/Th2 cytokine profile. J Immunol 172(10):5893–5899

    Article  CAS  PubMed  Google Scholar 

  44. Wellmann K, Volk B (1972) Fine structural changes in the rabbit placenta induced by cortisone. Arch Pathol 94(2):147–157

    CAS  PubMed  Google Scholar 

  45. Adler SP (2011) Screening for cytomegalovirus during pregnancy. Infect Dis Obstetr Gynecol 2011:1–9

    Article  Google Scholar 

  46. Yinon Y, Farine D, Yudin MH (2010) Screening, diagnosis, and management of cytomegalovirus infection in pregnancy. Obstet Gynecol Surv 65(11):736–743

    Article  PubMed  Google Scholar 

  47. Odland JØ et al (2001) Seropositivity of cytomegalovirus, parvovirus and rubella in pregnant women and recurrent aborters in Leningrad County. Russia Acta Obstetricia et Gynecologica Scandinavica 80(11):1025–1029

    Article  CAS  PubMed  Google Scholar 

  48. Sherkat R et al (2014) Seropositivity of cytomegalovirus in patients with recurrent pregnancy loss. J Res Med Sci 19(Suppl 1):S22

    PubMed  PubMed Central  Google Scholar 

  49. He D et al (2019) H19 regulates trophoblastic spheroid adhesion by competitively binding to let-7. Reproduction (Cambridge, England) 157(5):423

    Article  CAS  PubMed  Google Scholar 

  50. Germeyer A et al (2014) Endometrial beta3 integrin profile reflects endometrial receptivity defects in women with unexplained recurrent pregnancy loss. Reprod Biol Endocrinol 12(1):1–5

    Article  MathSciNet  Google Scholar 

  51. Weinstein LS et al (2004) Minireview: GNAS: normal and abnormal functions. Endocrinology 145(12):5459–5464

    Article  CAS  PubMed  Google Scholar 

  52. Alemu A et al (2016) Thyroid hormone dysfunction during pregnancy: a review. Int J Reprod Biomed 14(11):677

    CAS  PubMed  PubMed Central  Google Scholar 

  53. DiMarco A et al (2018) Undiagnosed primary hyperparathyroidism and recurrent miscarriage: the first prospective pilot study. World J Surg 42:639–645

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SR wrote the manuscript and coordinated the study, participated in intellectual discussions of the data, and revised the manuscript. KA performed most of the bioinformatics data analysis.

Corresponding author

Correspondence to Somayeh Reiisi.

Ethics declarations

Conflict of interest

We certify that there is no conflict of interest with any financial organization.

Ethical approval

This article does not contain any studies on human or animals.

Consent to participate

This article does not contain any individual person’s data in any form.

Consent for publication

This article does not contain any individual person’s data in any form.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reiisi, S., Ahmadi, K. Bioinformatics analysis of a disease-specific lncRNA–miRNA–mRNA regulatory network in recurrent spontaneous abortion (RSA). Arch Gynecol Obstet 309, 1609–1620 (2024). https://doi.org/10.1007/s00404-023-07356-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-023-07356-3

Keywords

Navigation