Skip to main content
Log in

Neue Mapping-Tools in der Katheterablation von Vorhofflimmern

New mapping tools for catheter ablation of atrial fibrillation

  • Schwerpunkt
  • Published:
Herzschrittmachertherapie + Elektrophysiologie Aims and scope Submit manuscript

Zusammenfassung

Die Lungenvenen gelten seit Langem als Hauptquelle atrialer Trigger, und ihre Isolierung ist zum Eckpfeiler der Ablation von Vorhofflimmern geworden. Die radiofrequenzbasierte Pulmonalvenenisolation (PVI) ist jedoch technisch anspruchsvoll, und die langfristigen Erfolgsraten sind begrenzt. In diesem Artikel werden mehrere vielversprechende neue Mappingtechniken beschrieben, die darauf abzielen, die Mechanismen besser zu verstehen, die der Entstehung und Aufrechterhaltung von Vorhofflimmern zugrunde liegen, und effektivere Ablationsstrategien zu entwickeln.

Abstract

The pulmonary veins have been recognized as the primary source of atrial triggers, and their isolation has become the cornerstone for ablation of atrial fibrillation. However, long-term success rates after pulmonary vein isolation (PVI) are limited. Several promising new mapping techniques are described in this article, aiming to better understand the mechanisms underlying the induction and maintenance of atrial fibrillation and to develop more effective ablation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Hindricks G, Potpara T, Dagres N et al (2021) 2020 ESC guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association of Cardio-Thoracic Surgery (EACTS). Eur Heart J 42:373–498. https://doi.org/10.1093/eurheartj/ehaa612 (PMID: 32860505)

    Article  PubMed  Google Scholar 

  2. Heeger CH, Rillig A, Geisler D et al (2019) Left atrial appendage isolation in patients not responding to pulmonary vein isolation. Circulation 139(5):712–715. https://doi.org/10.1161/CIRCULATIONAHA.118.037451

    Article  PubMed  Google Scholar 

  3. Sarkozy A (2021) Patient-specific mapping of atrial fibrillation mechanisms: the quest continues. JACC Clin Electrophysiol 7(7):933–935

    Article  PubMed  Google Scholar 

  4. van Schie MS, Kharbanda RK, Houck CA et al (2021) Identification of low-voltage areas: a unipolar, bipolar, and omnipolar perspective. Circ Arrhythm Electrophysiol 14(7):e9912. https://doi.org/10.1161/CIRCEP.121.009912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rottner L, Bellmann B, Lin T et al (2020) Catheter ablation of atrial fibrillation: state of the art and future perspectives. Cardiol Ther 9(1):45–58. https://doi.org/10.1007/s40119-019-00158-2

    Article  PubMed  PubMed Central  Google Scholar 

  6. Liang JJ, Tschabrunn CM, Marchlinski FE (2017) Omnipolar mapping: a method to improve the fidelity of voltage mapping to guide substrate-based atrial fibrillation ablation? Circ Arrhythm Electrophysiol 10(9):e5700. https://doi.org/10.1161/CIRCEP.117.005700

    Article  PubMed  Google Scholar 

  7. Deno DC, Balachandran R, Morgan D et al (2017) Orientation-independent catheter-based characterization of myocardial activation. IEEE Trans Biomed Eng 64:1067–1077

    Article  PubMed  Google Scholar 

  8. Coveney S, Cantwell C, Roney C (2022) Atrial conduction velocity mapping: clinical tools, algorithms and approaches for understanding the arrhythmogenic substrate. Med Biol Eng Comput. https://doi.org/10.1007/s11517-022-02621-0

    Article  PubMed  PubMed Central  Google Scholar 

  9. Honarbakhsh S, Schilling RJ, Dhillon G et al (2018) A novel mapping system for panoramic mapping of the left atrium: application to detect and characterize localized sources maintaining atrial fibrillation. JACC Clin Electrophysiol 4(1):124–134. https://doi.org/10.1016/j.jacep.2017.09.177

    Article  PubMed  PubMed Central  Google Scholar 

  10. Katritsis G, Luther V, Kanagaratnam P, Linton NW (2018) Arrhythmia mechanisms revealed by ripple mapping. Arrhythm Electrophysiol Rev 7(4):261–264. https://doi.org/10.15420/aer.2018.44.3

    Article  PubMed  PubMed Central  Google Scholar 

  11. Compagnucci P, Volpato G, Falanga U et al (2021) Recent advances in three-dimensional electroanatomical mapping guidance for the ablation of complex atrial and ventricular arrhythmias. J Interv Card Electrophysiol 61(1):37–43. https://doi.org/10.1007/s10840-020-00781-3

    Article  PubMed  Google Scholar 

  12. Unland R, Bergau L, El Hamriti M et al (2021) Find me if you can: first clinical experience using the novel CARTOFINDER algorithm in a routine workflow for atrial fibrillation ablation. J Clin Med 10(13):2979. https://doi.org/10.3390/jcm10132979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sroubek J, Rottmann M, Barkagan M et al (2019) A novel octaray multielectrode catheter for high-resolution atrial mapping: electrogram characterization and utility for mapping ablation gaps. J Cardiovasc Electrophysiol 30(5):749–757. https://doi.org/10.1111/jce.13867

    Article  PubMed  Google Scholar 

  14. Sarkozy A, Vijgen J, De Potter T, Schilling R, Markides V (2022) An early multicenter experience of the novel high-density star-shaped mapping catheter in complex arrhythmias. J Interv Card Electrophysiol. https://doi.org/10.1007/s10840-022-01176-2

    Article  PubMed  Google Scholar 

  15. Bun SS, Latcu DG, Delassi T, Jamili ME, Amoura AA, Saoudi N (2016) Ultra-high-definition mapping of atrial arrhythmias. Circ J 80(3):579–586. https://doi.org/10.1253/circj.CJ-16-0016

    Article  PubMed  Google Scholar 

  16. Narayan SM, Krummen DE, Enyeart MW, Rappel WJ (2012) Computational mapping identifies localized mechanisms for ablation of atrial fibrillation. PLoS ONE 7:e46034. https://doi.org/10.1371/journal.pone.0046034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tilz RR, Lenz C, Sommer P et al (2021) Focal impulse and rotor modulation ablation vs. pulmonary vein isolation for the treatment of paroxysmal atrial fibrillation: results from the FIRMAP AF study. Europace 23(5):722–730. https://doi.org/10.1093/europace/euaa378

    Article  PubMed  Google Scholar 

  18. Tilz RR, Yalin K, Lyan E et al (2022) Stand-alone Focal Impulse and Rotor Modulation (FIRM) ablation versus second-generation cryoballoon pulmonary vein isolation for paroxysmal atrial fibrillation. J Cardiovasc Electrophysiol. https://doi.org/10.1111/jce.15564

    Article  PubMed  Google Scholar 

  19. Bellmann B, Lin T, Ruppersberg P et al (2018) Identification of active atrial fibrillation sources and their discrimination from passive rotors using electrographical flow mapping. Clin Res Cardiol 107(11):1021–1032. https://doi.org/10.1007/s00392-018-1274-7

    Article  PubMed  Google Scholar 

  20. Szili-Torok T, Kis Z, Bhagwandien R et al (2021) Functional electrographic flow patterns in patients with persistent atrial fibrillation predict outcome of catheter ablation. J Cardiovasc Electrophysiol 32(8):2148–2158. https://doi.org/10.1111/jce.15115

    Article  PubMed  PubMed Central  Google Scholar 

  21. Willems S, Verma A, Betts TR et al (2019) Targeting nonpulmonary vein sources in persistent atrial fibrillation identified by noncontact charge density mapping: UNCOVER AF trial. Circ Arrhythm Electrophysiol 12(7):e7233. https://doi.org/10.1161/CIRCEP.119.007233

    Article  PubMed  Google Scholar 

  22. Grace A, Willems S, Meyer C et al (2019) High-resolution noncontact charge-density mapping of endocardial activation. JCI Insight 4(6):e126422. https://doi.org/10.1172/jci.insight.126422

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bala G, De Asmundis C, Chierchia C (2021) A novel noncontact high-resolution charge density mapping system to guide ablation of complex atrial arrhythmias: overview of device technology and application. Expert Rev Med Devices 18(4):343–350. https://doi.org/10.1080/17434440.2021.1902302

    Article  CAS  PubMed  Google Scholar 

  24. Honarbakhsh S, Hunter RJ, Ullah W, Keating E, Finlay M, Schilling RJ (2019) Ablation in persistent atrial fibrillation using stochastic trajectory analysis of ranked signals (STAR) mapping method. JACC Clin Electrophysiol 5(7):817–829. https://doi.org/10.1016/j.jacep.2019.04.007

    Article  PubMed  Google Scholar 

  25. Honarbakhsh S, Schilling RJ, Finlay M, Keating E, Hunter RJ (2020) Prospective STAR-guided ablation in persistent atrial fibrillation using sequential mapping with multipolar catheters. Circ Arrhythm Electrophysiol 13(10):e8824. https://doi.org/10.1161/CIRCEP.120.008824

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rudy Y (2021) Noninvasive mapping of repolarization with electrocardiographic imaging. J Am Heart Assoc 10(9):e21396. https://doi.org/10.1161/JAHA.121.021396

    Article  PubMed  PubMed Central  Google Scholar 

  27. Knecht S, Sohal M, Deisenhofer I et al (2017) Multicentre evaluation of non-invasive biatrial mapping for persistent atrial fibrillation ablation: the AFACART study. Europace 19(8):1302–1309. https://doi.org/10.1093/europace/euw168

    Article  PubMed  Google Scholar 

  28. Tovia Brodie O, Rav-Acha M, Wolak A et al (2022) Anatomical accuracy of the KODEX-EPD novel 3D mapping system of the left atrium during pulmonary vein isolation: a correlation with computer tomography imaging. J Cardiovasc Electrophysiol 33(4):618–625. https://doi.org/10.1111/jce.15391

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cauti FM, Solimene F, Stabile G et al (2021) Occlusion tool software for pulmonary vein occlusion verification in atrial fibrillation cryoballoon ablation. Pacing Clin Electrophysiol 44(1):63–70. https://doi.org/10.1111/pace.14130

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryuri Delgado-López MD.

Ethics declarations

Interessenkonflikt

C.-H. Heeger erhielt Reisestipendien und Forschungsstipendien von Medtronic, Claret Medical, SentreHeart, Biosense Webster, Pfizer und Cardiofocus. R. R. Tilz erhielt Reisestipendien von Abbott, Biosense Webster, Daiichi Sankyo, SentreHeart und Speaker’s Bureau Honoraria von Biosense Webster, Biotronik, Pfizer, Topera, Bristol-Myers Squibb; Bayer, Sano Aventis und Forschungsstipendien von Cardiofocus. M. Delgado-López gibt an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delgado-López, M., Heeger, CH. & Tilz, R.R. Neue Mapping-Tools in der Katheterablation von Vorhofflimmern. Herzschr Elektrophys 33, 380–385 (2022). https://doi.org/10.1007/s00399-022-00902-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00399-022-00902-7

Schlüsselwörter

Keywords

Navigation