Skip to main content
Log in

Statins affect human iPSC-derived cardiomyocytes by interfering with mitochondrial function and intracellular acidification

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Statins are effective drugs in reducing cardiovascular morbidity and mortality by inhibiting cholesterol synthesis. These effects are primarily beneficial for the patient’s vascular system. A significant number of statin users suffer from muscle complaints probably due to mitochondrial dysfunction, a mechanism that has recently been elucidated. This has raised our interest in exploring the effects of statins on cardiac muscle cells in an era where the elderly and patients with poorer functioning hearts and less metabolic spare capacity start dominating our patient population. Here, we investigated the effects of statins on human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-derived CMs). hiPSC-derived CMs were exposed to simvastatin, atorvastatin, rosuvastatin, and cerivastatin at increasing concentrations. Metabolic assays and fluorescent microscopy were employed to evaluate cellular viability, metabolic capacity, respiration, intracellular acidity, and mitochondrial membrane potential and morphology. Over a concentration range of 0.3–100 µM, simvastatin lactone and atorvastatin acid showed a significant reduction in cellular viability by 42–64%. Simvastatin lactone was the most potent inhibitor of basal and maximal respiration by 56% and 73%, respectively, whereas simvastatin acid and cerivastatin acid only reduced maximal respiration by 50% and 42%, respectively. Simvastatin acid and lactone and atorvastatin acid significantly decreased mitochondrial membrane potential by 20%, 6% and 3%, respectively. The more hydrophilic atorvastatin acid did not seem to affect cardiomyocyte metabolism. This calls for further research on the translatability to the clinical setting, in which a more conscientious approach to statin prescribing might be considered, especially regarding the current shift in population toward older patients with poor cardiac function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability statement

All data used in this study are available from the authors on reasonable request.

References

  1. Allard NAE, Schirris TJJ, Verheggen RJ, Russel FGM, Rodenburg RJ, Smeitink JAM, Thompson PD, Hopman MTE, Timmers S (2017) Statins affect skeletal muscle performance: evidence for disturbances in energy metabolism. J Clin Endocrinol Metab 103:75–84. https://doi.org/10.1210/jc.2017-01561

    Article  Google Scholar 

  2. Armitage J (2007) The safety of statins in clinical practice. Lancet (London, England) 370:1781–1790. https://doi.org/10.1016/S0140-6736(07)60716-8

    Article  CAS  PubMed  Google Scholar 

  3. Bakar NSB, Kamali F, Brown CDA (2016) Effect of statins on functional expression of membrane transporters in L6 rat skeletal muscle cells. J Biomed Clin Sci 1:17–26

    Google Scholar 

  4. Bell RM, Yellon DM (2003) Atorvastatin, administered at the onset of reperfusion, and independent oflipid lowering, protects the myocardiumby up-regulating a pro-survival pathway. J Am Coll Cardiol 41:508–515. https://doi.org/10.1016/S0735-1097(02)02816-4

    Article  CAS  PubMed  Google Scholar 

  5. Berglund L, Björling E, Oksvold P, Fagerberg L, Asplund A, Al-Khalili Szigyarto C, Persson A, Ottosson J, Wernérus H, Nilsson P, Lundberg E, Sivertsson Å, Navani S, Wester K, Kampf C, Hober S, Pontén F, Uhlén M (2008) A genecentric human protein atlas for expression profiles based on antibodies. Mol Cell Proteom 7:2019–2027. https://doi.org/10.1074/mcp.R800013-MCP200

    Article  CAS  Google Scholar 

  6. Björkhem-Bergman L, Lindh JD, Bergman P (2011) What is a relevant statin concentration in cell experiments claiming pleiotropic effects? Br J Clin Pharmacol 72:164–165. https://doi.org/10.1111/j.1365-2125.2011.03907.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Blais JE, Chan EW, Law SWY, Mok MT, Huang D, Wong ICK, Siu C-W (2019) Trends in statin prescription prevalence, initiation, and dosing: Hong Kong, 2004–2015. Atherosclerosis 280:174–182. https://doi.org/10.1016/j.atherosclerosis.2018.11.015

    Article  CAS  PubMed  Google Scholar 

  8. Boengler K, Kosiol M, Mayr M, Schulz R, Rohrbach S (2017) Mitochondria and ageing: role in heart, skeletal muscle and adipose tissue. J Cachexia Sarcopenia Muscle 8:349–369. https://doi.org/10.1002/jcsm.12178

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bonifacio A, Mullen PJ, Mityko IS, Navegantes LC, Bouitbir J, Krähenbühl S (2016) Simvastatin induces mitochondrial dysfunction and increased atrogin-1 expression in H9c2 cardiomyocytes and mice in vivo. Arch Toxicol 90:203–215. https://doi.org/10.1007/s00204-014-1378-4

    Article  CAS  PubMed  Google Scholar 

  10. Bouitbir J, Charles A-L, Echaniz-Laguna A, Kindo M, Daussin F, Auwerx J, Piquard F, Geny B, Zoll J (2012) Opposite effects of statins on mitochondria of cardiac and skeletal muscles: a “mitohormesis” mechanism involving reactive oxygen species and PGC-1. Eur Heart J 33:1397–1407. https://doi.org/10.1093/eurheartj/ehr224

    Article  CAS  PubMed  Google Scholar 

  11. Buettner C, Davis RB, Leveille SG, Mittleman MA, Mukamal KJ (2008) Prevalence of musculoskeletal pain and statin use. J Gen Intern Med 23:1182–1186. https://doi.org/10.1007/s11606-008-0636-7

    Article  PubMed  PubMed Central  Google Scholar 

  12. Buikema JW, Lee S, Goodyer WR, Maas RG, Chirikian O, Li G, Miao Y, Paige SL, Lee D, Wu H, Paik DT, Rhee S, Tian L, Galdos FX, Puluca N, Beyersdorf B, Hu J, Beck A, Venkamatran S, Swami S, Wijnker P, Schuldt M, Dorsch LM, van Mil A, Red-Horse K, Wu JY, Geisen C, Hesse M, Serpooshan V, Jovinge S, Fleischmann BK, Doevendans PA, van der Velden J, Garcia KC, Wu JC, Sluijter JPG, Wu SM (2020) Wnt activation and reduced cell-cell contact synergistically induce massive expansion of functional human iPSC-derived cardiomyocytes. Cell Stem Cell 27:50-63.e55. https://doi.org/10.1016/j.stem.2020.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, Guertin DA, Chang JH, Lindquist RA, Moffat J, Golland P, Sabatini DM (2006) Cell profiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7:R100. https://doi.org/10.1186/gb-2006-7-10-r100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cholesterol Treatment Trialists C, Mihaylova B, Emberson J, Blackwell L, Keech A, Simes J, Barnes EH, Voysey M, Gray A, Collins R, Baigent C (2012) The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. Lancet (London, England) 380:581–590. https://doi.org/10.1016/S0140-6736(12)60367-5

    Article  CAS  Google Scholar 

  15. Cholesterol Treatment Trialists’ C, Baigent C, Blackwell L, Emberson J, Holland LE, Reith C, Bhala N, Peto R, Barnes EH, Keech A, Simes J, Collins R (2010) Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet (London, England) 376:1670–1681. https://doi.org/10.1016/S0140-6736(10)61350-5

    Article  CAS  Google Scholar 

  16. Cianflone E, Cappetta D, Mancuso T, Sabatino J, Marino F, Scalise M, Albanese M, Salatino A, Parrotta EI, Cuda G, De Angelis A, Berrino L, Rossi F, Nadal-Ginard B, Torella D, Urbanek K (2020) Statins stimulate new myocyte formation after myocardial infarction by activating growth and differentiation of the endogenous cardiac stem cells. Int J Mol Sci 21:7927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dai D-F, Rabinovitch PS, Ungvari Z, Sinclair D, North B (2012) Mitochondria and cardiovascular aging. Circ Res 110:1109–1124. https://doi.org/10.1161/CIRCRESAHA.111.246140

    Article  CAS  PubMed  Google Scholar 

  18. DeGorter MK, Tirona RG, Schwarz UI, Choi YH, Dresser GK, Suskin N, Myers K, Zou G, Iwuchukwu O, Wei WQ, Wilke RA, Hegele RA, Kim RB (2013) Clinical and pharmacogenetic predictors of circulating atorvastatin and rosuvastatin concentrations in routine clinical care. Circ Cardiovasc Genet 6:400–408. https://doi.org/10.1161/circgenetics.113.000099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Demyanets S, Kaun C, Pfaffenberger S, Hohensinner PJ, Rega G, Pammer J, Maurer G, Huber K, Wojta J (2006) Hydroxymethylglutaryl-coenzyme A reductase inhibitors induce apoptosis in human cardiac myocytes in vitro. Biochem Pharmacol 71:1324–1330. https://doi.org/10.1016/j.bcp.2006.01.016

    Article  CAS  PubMed  Google Scholar 

  20. Du Y, Guo Z (2022) Recent progress in ferroptosis: inducers and inhibitors. Cell Death Discov 8:501. https://doi.org/10.1038/s41420-022-01297-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Duan D, Goemans N, Si T, Mercuri E, Aartsma-Rus A (2021) Duchenne muscular dystrophy. Nat Rev Dis Primers 7:13. https://doi.org/10.1038/s41572-021-00248-3

    Article  PubMed  PubMed Central  Google Scholar 

  22. Edwards SL, Zlochiver V, Conrad DB, Vaidyanathan R, Valiquette AM, Joshi-Mukherjee R (2018) A multiwell cardiac μGMEA platform for action potential recordings from human iPSC-derived cardiomyocyte constructs. Stem Cell Rep 11:522–536. https://doi.org/10.1016/j.stemcr.2018.06.016

    Article  Google Scholar 

  23. Ferdinandy P, Baczkó I, Bencsik P, Giricz Z, Görbe A, Pacher P, Varga ZV, Varró A, Schulz R (2019) Definition of hidden drug cardiotoxicity: paradigm change in cardiac safety testing and its clinical implications. Eur Heart J 40:1771–1777. https://doi.org/10.1093/eurheartj/ehy365

    Article  CAS  PubMed  Google Scholar 

  24. Fernández-Vizarra E, Enríquez JA, Pérez-Martos A, Montoya J, Fernández-Silva P (2011) Tissue-specific differences in mitochondrial activity and biogenesis. Mitochondrion 11:207–213. https://doi.org/10.1016/j.mito.2010.09.011

    Article  CAS  PubMed  Google Scholar 

  25. Feyen DAM, McKeithan WL, Bruyneel AAN, Spiering S, Hörmann L, Ulmer B, Zhang H, Briganti F, Schweizer M, Hegyi B, Liao Z, Pölönen RP, Ginsburg KS, Lam CK, Serrano R, Wahlquist C, Kreymerman A, Vu M, Amatya PL, Behrens CS, Ranjbarvaziri S, Maas RGC, Greenhaw M, Bernstein D, Wu JC, Bers DM, Eschenhagen T, Metallo CM, Mercola M (2020) Metabolic maturation media improve physiological function of human iPSC-derived cardiomyocytes. Cell Rep 32:107925. https://doi.org/10.1016/j.celrep.2020.107925

    Article  CAS  PubMed  Google Scholar 

  26. Godoy JC, Niesman IR, Busija AR, Kassan A, Schilling JM, Schwarz A, Alvarez EA, Dalton ND, Drummond JC, Roth DM, Kararigas G, Patel HH, Zemljic-Harpf AE (2019) Atorvastatin, but not pravastatin, inhibits cardiac Akt/mTOR signaling and disturbs mitochondrial ultrastructure in cardiac myocytes. FASEB J 33:1209–1225. https://doi.org/10.1096/fj.201800876R

    Article  CAS  PubMed  Google Scholar 

  27. Gu X, Ma Y, Liu Y, Wan Q (2021) Measurement of mitochondrial respiration in adherent cells by Seahorse XF96 Cell Mito Stress Test. STAR Protoc 2:100245. https://doi.org/10.1016/j.xpro.2020.100245

    Article  CAS  PubMed  Google Scholar 

  28. Han C, Liu Y, Dai R, Ismail N, Su W, Li B (2020) Ferroptosis and its potential role in human diseases. Front Pharmacol. https://doi.org/10.3389/fphar.2020.00239

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hayashidani S, Tsutsui H, Shiomi T, Suematsu N, Kinugawa S, Ide T, Wen J, Takeshita A (2002) Fluvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, attenuates left ventricular remodeling and failure after experimental myocardial infarction. Circulation 105:868–873. https://doi.org/10.1161/hc0702.104164

    Article  CAS  PubMed  Google Scholar 

  30. Hengstler JG, Sjögren AK, Zink D, Hornberg JJ (2020) In vitro prediction of organ toxicity: the challenges of scaling and secondary mechanisms of toxicity. Arch Toxicol 94:353–356. https://doi.org/10.1007/s00204-020-02669-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hollander JM, Thapa D, Shepherd DL (2014) Physiological and structural differences in spatially distinct subpopulations of cardiac mitochondria: influence of cardiac pathologies. Am J Physiol Heart Circ Physiol 307:H1-14. https://doi.org/10.1152/ajpheart.00747.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hoogstraten CA, Smeitink JAM, Russel FGM, Schirris TJJ (2022) Dissecting drug-induced cytotoxicity and metabolic dysfunction in conditionally immortalized human proximal tubule cells. Front Toxicol 4:842396. https://doi.org/10.3389/ftox.2022.842396

    Article  PubMed  PubMed Central  Google Scholar 

  33. Iannetti EF, Smeitink JA, Beyrath J, Willems PH, Koopman WJ (2016) Multiplexed high-content analysis of mitochondrial morphofunction using live-cell microscopy. Nat Protoc 11:1693–1710. https://doi.org/10.1038/nprot.2016.094

    Article  CAS  PubMed  Google Scholar 

  34. Irwin JC, Fenning AS, Vella RK (2020) Statins with different lipophilic indices exert distinct effects on skeletal, cardiac and vascular smooth muscle. Life Sci 242:117225. https://doi.org/10.1016/j.lfs.2019.117225

    Article  CAS  PubMed  Google Scholar 

  35. Jaiquel Baron S, King MS, Kunji ERS, Schirris TJJ (2021) Characterization of drug-induced human mitochondrial ADP/ATP carrier inhibition. Theranostics 11:5077–5091. https://doi.org/10.7150/thno.54936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jones Steven P, Teshima Y, Akao M, Marbán E (2003) Simvastatin attenuates oxidant-induced mitochondrial dysfunction in cardiac myocytes. Circ Res 93:697–699. https://doi.org/10.1161/01.RES.0000097262.21507.DF

    Article  CAS  PubMed  Google Scholar 

  37. Kaludercic N, Arusei RJ, Di Lisa F (2023) Recent advances on the role of monoamine oxidases in cardiac pathophysiology. Basic Res Cardiol 118:41. https://doi.org/10.1007/s00395-023-01012-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kamentsky L, Jones TR, Fraser A, Bray MA, Logan DJ, Madden KL, Ljosa V, Rueden C, Eliceiri KW, Carpenter AE (2011) Improved structure, function and compatibility for Cell Profiler: modular high-throughput image analysis software. Bioinformatics 27:1179–1180. https://doi.org/10.1093/bioinformatics/btr095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kappler L, Hoene M, Hu C, von Toerne C, Li J, Bleher D, Hoffmann C, Böhm A, Kollipara L, Zischka H, Königsrainer A, Häring HU, Peter A, Xu G, Sickmann A, Hauck SM, Weigert C, Lehmann R (2019) Linking bioenergetic function of mitochondria to tissue-specific molecular fingerprints. Am J Physiol Endocrinol Metab 317:E374-e387. https://doi.org/10.1152/ajpendo.00088.2019

    Article  CAS  PubMed  Google Scholar 

  40. Kaufmann P, Török M, Zahno A, Waldhauser KM, Brecht K, Krähenbühl S (2006) Toxicity of statins on rat skeletal muscle mitochondria. Cell Mol Life Sci 63:2415–2425. https://doi.org/10.1007/s00018-006-6235-z

    Article  CAS  PubMed  Google Scholar 

  41. Kikutani Y, Kobayashi M, Konishi T, Sasaki S, Narumi K, Furugen A, Takahashi N, Iseki K (2016) Involvement of monocarboxylate transporter 4 expression in statin-induced cytotoxicity. J Pharm Sci 105:1544–1549. https://doi.org/10.1016/j.xphs.2016.01.014

    Article  CAS  PubMed  Google Scholar 

  42. Kleinbongard P (2023) Perspective: mitochondrial STAT3 in cardioprotection. Basic Res Cardiol 118:32. https://doi.org/10.1007/s00395-023-01003-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kobayashi M, Otsuka Y, Itagaki S, Hirano T, Iseki K (2006) Inhibitory effects of statins on human monocarboxylate transporter 4. Int J Pharm 317:19–25. https://doi.org/10.1016/j.ijpharm.2006.02.043

    Article  CAS  PubMed  Google Scholar 

  44. Kocsis GF, Pipis J, Fekete V, Kovács-Simon A, Odendaal L, Molnár E, Giricz Z, Janáky T, van Rooyen J, Csont T, Ferdinandy P (2008) Lovastatin interferes with the infarct size-limiting effect of ischemic preconditioning and postconditioning in rat hearts. Am J Physiol Heart Circ Physiol 294:H2406-2409. https://doi.org/10.1152/ajpheart.00862.2007

    Article  CAS  PubMed  Google Scholar 

  45. Kunz WS (2003) Different metabolic properties of mitochondrial oxidative phosphorylation in different cell types—important implications for mitochondrial cytopathies. Exp Physiol 88:149–154. https://doi.org/10.1113/eph8802512

    Article  CAS  PubMed  Google Scholar 

  46. Leung YH, Lu J, Papillon M-È, Bélanger F, Turgeon J, Michaud V (2013) The role of MCT1 and MCT4 in drug-induced muscle disorders. FASEB J 27:674–1. https://doi.org/10.1096/fasebj.27.1_supplement.674.1

    Article  Google Scholar 

  47. Li B, Yang H, Wang X, Zhan Y, Sheng W, Cai H, Xin H, Liang Q, Zhou P, Lu C, Qian R, Chen S, Yang P, Zhang J, Shou W, Huang G, Liang P, Sun N (2017) Engineering human ventricular heart muscles based on a highly efficient system for purification of human pluripotent stem cell-derived ventricular cardiomyocytes. Stem Cell Res Ther 8:202. https://doi.org/10.1186/s13287-017-0651-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lian X, Zhang J, Azarin SM, Zhu K, Hazeltine LB, Bao X, Hsiao C, Kamp TJ, Palecek SP (2013) Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions. Nat Protoc 8:162–175. https://doi.org/10.1038/nprot.2012.150

    Article  CAS  PubMed  Google Scholar 

  49. Lotteau S, Ivarsson N, Yang Z, Restagno D, Colyer J, Hopkins P, Weightman A, Himori K, Yamada T, Bruton J, Steele D, Westerblad H, Calaghan S (2019) A mechanism for statin-induced susceptibility to myopathy. JACC Basic Transl Sci 4:509–523. https://doi.org/10.1016/j.jacbts.2019.03.012

    Article  PubMed  PubMed Central  Google Scholar 

  50. Maas RGC, Lee S, Harakalova M, Snijders Blok CJB, Goodyer WR, Hjortnaes J, Doevendans PAFM, Van Laake LW, van der Velden J, Asselbergs FW, Wu JC, Sluijter JPG, Wu SM, Buikema JW (2021) Massive expansion and cryopreservation of functional human induced pluripotent stem cell-derived cardiomyocytes. STAR Protoc 2:100334. https://doi.org/10.1016/j.xpro.2021.100334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mäkinen S, Datta N, Nguyen YH, Kyrylenko P, Laakso M, Koistinen HA (2020) Simvastatin profoundly impairs energy metabolism in primary human muscle cells. Endocr Connect 9:1103–1113. https://doi.org/10.1530/ec-20-0444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. McQuin C, Goodman A, Chernyshev V, Kamentsky L, Cimini BA, Karhohs KW, Doan M, Ding L, Rafelski SM, Thirstrup D, Wiegraebe W, Singh S, Becker T, Caicedo JC, Carpenter AE (2018) Cell Profiler 3.0: Next-generation image processing for biology. PLoS Biol 16:e2005970. https://doi.org/10.1371/journal.pbio.2005970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mehibel M, Ortiz-Martinez F, Voelxen N, Boyers A, Chadwick A, Telfer BA, Mueller-Klieser W, West CM, Critchlow SE, Williams KJ, Stratford IJ (2018) Statin-induced metabolic reprogramming in head and neck cancer: a biomarker for targeting monocarboxylate transporters. Sci Rep 8:16804. https://doi.org/10.1038/s41598-018-35103-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Naci H, Brugts J, Ades T (2013) Comparative tolerability and harms of individual statins. Circ Cardiovasc Qual Outcomes 6:390–399. https://doi.org/10.1161/CIRCOUTCOMES.111.000071

    Article  PubMed  Google Scholar 

  55. Ni X, Yang Z-z, Ye L-q, Han X-l, Zhao D-d, Ding F-y, Ding N, Wu H-c, Yu M, Xu G-y, Zhao Z-a, Lei W, Hu S-j (2022) Establishment of an in vitro safety assessment model for lipid-lowering drugs using same-origin human pluripotent stem cell-derived cardiomyocytes and endothelial cells. Acta Pharmacol Sin 43:240–250. https://doi.org/10.1038/s41401-021-00621-8

    Article  CAS  PubMed  Google Scholar 

  56. O’Connor N, Silver RB (2013) Ratio imaging: practical considerations for measuring intracellular Ca2+ and pH in living cells. Methods Cell Biol 114:387–406. https://doi.org/10.1016/b978-0-12-407761-4.00016-6

    Article  PubMed  Google Scholar 

  57. Prag HA, Murphy MP, Krieg T (2023) Preventing mitochondrial reverse electron transport as a strategy for cardioprotection. Basic Res Cardiol 118:34. https://doi.org/10.1007/s00395-023-01002-4

    Article  PubMed  PubMed Central  Google Scholar 

  58. Qu H, Guo M, Chai H, Wang WT, Gao ZY, Shi DZ (2018) Effects of coenzyme Q10 on statin-induced myopathy: an updated meta-analysis of randomized controlled trials. J Am Heart Assoc 7:e009835. https://doi.org/10.1161/jaha.118.009835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ridker PM, Danielson E, Fonseca FAH, Genest J, Gotto AM, Kastelein JJP, Koenig W, Libby P, Lorenzatti AJ, MacFadyen JG, Nordestgaard BG, Shepherd J, Willerson JT, Glynn RJ (2008) Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med 359:2195–2207. https://doi.org/10.1056/NEJMoa0807646

    Article  CAS  PubMed  Google Scholar 

  60. Rink TJ, Tsien RY, Pozzan T (1982) Cytoplasmic pH and free Mg2+ in lymphocytes. J Cell Biol 95:189–196. https://doi.org/10.1083/jcb.95.1.189

    Article  CAS  PubMed  Google Scholar 

  61. Rocha KC, Pereira BMV, Rodrigues AC (2018) An update on efflux and uptake transporters as determinants of statin response. Expert Opin Drug Metab Toxicol 14:613–624. https://doi.org/10.1080/17425255.2018.1482276

    Article  CAS  PubMed  Google Scholar 

  62. Rogers JK, Jhund PS, Perez AC, Bohm M, Cleland JG, Gullestad L, Kjekshus J, van Veldhuisen DJ, Wikstrand J, Wedel H, McMurray JJ, Pocock SJ (2014) Effect of rosuvastatin on repeat heart failure hospitalizations: the CORONA Trial (Controlled Rosuvastatin Multinational Trial in Heart Failure). JACC Heart Fail 2:289–297. https://doi.org/10.1016/j.jchf.2013.12.007

    Article  PubMed  Google Scholar 

  63. Ruscica M, Ferri N, Banach M, Sirtori CR, Corsini A (2023) Side effects of statins-from pathophysiology and epidemiology to diagnostic and therapeutic implications. Cardiovasc Res 118:3288–3304. https://doi.org/10.1093/cvr/cvac020

    Article  CAS  PubMed  Google Scholar 

  64. Salami JA, Warraich H, Valero-Elizondo J, Spatz ES, Desai NR, Rana JS, Virani SS, Blankstein R, Khera A, Blaha MJ, Blumenthal RS, Lloyd-Jones D, Nasir K (2017) National trends in statin use and expenditures in the us adult population from 2002 to 2013: insights from the Medical Expenditure Panel Survey. JAMA Cardiol 2:56–65. https://doi.org/10.1001/jamacardio.2016.4700

    Article  PubMed  Google Scholar 

  65. Schachter M (2005) Chemical, pharmacokinetic and pharmacodynamic properties of statins: an update. Fundam Clin Pharmacol 19:117–125. https://doi.org/10.1111/j.1472-8206.2004.00299.x

    Article  CAS  PubMed  Google Scholar 

  66. Schirris TJJ, Renkema GH, Ritschel T, Voermans NC, Bilos A, van Engelen BGM, Brandt U, Koopman WJH, Beyrath JD, Rodenburg RJ, Willems PHGM, Smeitink JAM, Russel FGM (2015) Statin-induced myopathy is associated with mitochondrial complex III inhibition. Cell Metab 22:399–407. https://doi.org/10.1016/j.cmet.2015.08.002

    Article  CAS  PubMed  Google Scholar 

  67. Sofou K, De Coo IF, Isohanni P, Ostergaard E, Naess K, De Meirleir L, Tzoulis C, Uusimaa J, De Angst IB, Lönnqvist T, Pihko H, Mankinen K, Bindoff LA, Tulinius M, Darin N (2014) A multicenter study on Leigh syndrome: disease course and predictors of survival. Orphanet J Rare Dis 9:52. https://doi.org/10.1186/1750-1172-9-52

    Article  PubMed  PubMed Central  Google Scholar 

  68. Stirling DR, Swain-Bowden MJ, Lucas AM, Carpenter AE, Cimini BA, Goodman A (2021) Cell Profiler 4: improvements in speed, utility and usability. BMC Bioinform 22:433. https://doi.org/10.1186/s12859-021-04344-9

    Article  Google Scholar 

  69. Stroes ES, Thompson PD, Corsini A, Vladutiu GD, Raal FJ, Ray KK, Roden M, Stein E, Tokgözoğlu L, Nordestgaard BG, Bruckert E, De Backer G, Krauss RM, Laufs U, Santos RD, Hegele RA, Hovingh GK, Leiter LA, Mach F, März W, Newman CB, Wiklund O, Jacobson TA, Catapano AL, Chapman MJ, Ginsberg HN, Panel EASC, Panel EASC, Stroes E, Thompson PD, Corsini A, Vladutiu GD, Raal FJ, Ray KK, Roden M, Stein E, Tokgözoğlu L, Nordestgaard BG, Bruckert E, Krauss RM, Laufs U, Santos RD, März W, Newman CB, John Chapman M, Ginsberg HN, John Chapman M, Ginsberg HN, de Backer G, Catapano AL, Hegele RA, Kees Hovingh G, Jacobson TA, Leiter L, Mach F, Wiklund O (2015) Statin-associated muscle symptoms: impact on statin therapy—European Atherosclerosis Society Consensus Panel Statement on Assessment, Aetiology and Management. Eur Heart J 36:1012–1022. https://doi.org/10.1093/eurheartj/ehv043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tang D, Chen X, Kang R, Kroemer G (2021) Ferroptosis: molecular mechanisms and health implications. Cell Res 31:107–125. https://doi.org/10.1038/s41422-020-00441-1

    Article  CAS  PubMed  Google Scholar 

  71. Tang X, Wang Z, Hu S, Zhou B (2022) Assessing drug-induced mitochondrial toxicity in cardiomyocytes: implications for preclinical cardiac safety evaluation. Pharmaceutics 14:1313. https://doi.org/10.3390/pharmaceutics14071313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Thompson PD, Clarkson P, Karas RH (2003) Statin-associated myopathy. JAMA 289:1681–1690. https://doi.org/10.1001/jama.289.13.1681

    Article  CAS  PubMed  Google Scholar 

  73. Tian L, Oikonomopoulos A, Liu C, Kitani T, Shrestha R, Chen CL, Ong S-G, Smeets M, Karakikes I, Sayed N, Wu JC (2020) Molecular signatures of beneficial class effects of statins on human induced pluripotent stem cell-derived cardiomyocytes. Circulation 141:1208–1210. https://doi.org/10.1161/CIRCULATIONAHA.118.035906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tronstad JK, Nooteboom M, Nilsson IHL, Nikolaisen J, Sokolewicz M, Grefte S, Pettersen KNI, Dyrstad S, Hoel F, Willems HGMP, Koopman JHW (2014) Regulation and quantification of cellular mitochondrial morphology and content. Curr Pharm Des 20:5634–5652. https://doi.org/10.2174/1381612820666140305230546

    Article  CAS  PubMed  Google Scholar 

  75. Velissaris D, Karamouzos V, Ktenopoulos N, Pierrakos C, Karanikolas M (2015) The use of sodium bicarbonate in the treatment of acidosis in sepsis: a literature update on a long term debate. Crit Care Res Pract 2015:605830. https://doi.org/10.1155/2015/605830

    Article  PubMed  PubMed Central  Google Scholar 

  76. Venturi E, Lindsay C, Lotteau S, Yang Z, Steer E, Witschas K, Wilson AD, Wickens JR, Russell AJ, Steele D, Calaghan S, Sitsapesan R (2018) Simvastatin activates single skeletal RyR1 channels but exerts more complex regulation of the cardiac RyR2 isoform. Br J Pharmacol 175:938–952. https://doi.org/10.1111/bph.14136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Will Y, Shields JE, Wallace KB (2019) Drug-induced mitochondrial toxicity in the geriatric population: challenges and future directions. Biology (Basel). https://doi.org/10.3390/biology8020032

    Article  PubMed  Google Scholar 

  78. Yokoyama M, Seo T, Park T, Yagyu H, Hu Y, Son NH, Augustus AS, Vikramadithyan RK, Ramakrishnan R, Pulawa LK, Eckel RH, Goldberg IJ (2007) Effects of lipoprotein lipase and statins on cholesterol uptake into heart and skeletal muscle. J Lipid Res 48:646–655. https://doi.org/10.1194/jlr.M600301-JLR200

    Article  CAS  PubMed  Google Scholar 

  79. Yoshimura S, Uchida K, Daimon T, Takashima R, Kimura K, Morimoto T, Tanada S, Iida T, Kuroda J, Nose A, Tatebayashi K, Shimizu F, Tsudaka S, Takeuchi M, Hiyama N, Oki Y, Hagii J, Saito S, Matsumoto T, Tanaka Y, Kuramoto Y, Mikami K, Shinoda N, Shimo D, Soneda J, Tokuda K, Matsuda K, Hiroto K, Yamaura I, Okada T, Hirano T, Kuwayama N, Teramukai S (2017) Randomized controlled trial of early versus delayed statin therapy in patients with acute ischemic stroke. Stroke 48:3057–3063. https://doi.org/10.1161/STROKEAHA.117.017623

    Article  CAS  PubMed  Google Scholar 

  80. Zhang Q, Qu H, Chen Y, Luo X, Chen C, Xiao B, Ding X, Zhao P, Lu Y, Chen AF, Yu Y (2022) Atorvastatin induces mitochondria-dependent ferroptosis via the modulation of Nrf2-xCT/GPx4 Axis. Front Cell Dev Biol. https://doi.org/10.3389/fcell.2022.806081

    Article  PubMed  PubMed Central  Google Scholar 

  81. Zhang R, Wang Y, Ye K, Picard M, Gu Z (2017) Independent impacts of aging on mitochondrial DNA quantity and quality in humans. BMC Genom 18:890. https://doi.org/10.1186/s12864-017-4287-0

    Article  CAS  Google Scholar 

  82. Zhou FQ (2005) Pyruvate in the correction of intracellular acidosis: a metabolic basis as a novel superior buffer. Am J Nephrol 25:55–63. https://doi.org/10.1159/000084141

    Article  CAS  PubMed  Google Scholar 

  83. Zhou XH, Cai LY, Lai WH, Bai X, Liu YB, Zhu Q, He GD, Chen JY, Huang M, Zhou ZL, Zhong SL (2020) Impact of plasma exposure of statins and their metabolites with major adverse cardiovascular events in chinese patients with coronary artery disease. Front Pharmacol 11:675. https://doi.org/10.3389/fphar.2020.00675

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Tjeu H Henst for his help in the data analysis of the microscopic TMRM images. The authors also would like to thank Radboudumc Technology Center Microscopy and Prof. Dr. Jan AM Smeitink and Dr. Svetlana Pecheritsyna from Khondrion BV for providing fluorescent microscopy facilities. Finally, the authors want to thank Christian Snijders Blok for performing the flow cytometry analyses.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

TS: data curation, formal analysis, investigation, project administration, software, validation, visualization, writing—original draft, writing—reviewing and editing; SS: conceptualization, funding acquisition, supervision, writing—reviewing and editing; RM: methodology, investigation, resources, writing—reviewing and editing; JS: resources, writing—reviewing and editing; JB: resources, writing—reviewing and editing; PB: investigation, writing—reviewing and editing; TM: investigation, writing—reviewing and editing; WM supervision, writing—reviewing and editing; FR: resources, supervision, writing—reviewing and editing; T:S conceptualization, formal analysis, funding acquisition, methodology, resources, software, supervision, writing—reviewing and editing. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Frans G. M. Russel.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4739 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Somers, T., Siddiqi, S., Maas, R.G.C. et al. Statins affect human iPSC-derived cardiomyocytes by interfering with mitochondrial function and intracellular acidification. Basic Res Cardiol 119, 309–327 (2024). https://doi.org/10.1007/s00395-023-01025-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-023-01025-x

Keywords

Navigation