Skip to main content

Advertisement

Log in

Construction of a prognostic model for autophagy in Wilm's tumor

  • Original Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Background

Wilm's tumor (WT) is one of the most common childhood urological tumors, ranking second in the incidence of pediatric abdominal tumors. The development of WT is associated with various factors, and the correlation with autophagy is currently unclear.

Purpose

To develop a new prognostic model of autophagy-related genes (ATG) for WT.

Methods

Using the Therapeutically applicable research to generate effective treatments (TARGET) database to screen for differentially expressed ATGs in WT and normal tissues. ATGs were screened for prognostic relevance to WT using one-way and multifactorial Cox regression analyses and prognostic models were constructed. The risk score was calculated according to the model, and the predictive ability of the constructed model was analyzed using the ROC (receiver operating characteristic) curve to verify the significance of the model for the prognosis of WT.

Results

Sixty-eight differentially expressed ATGs were identified by univariate Cox regression analysis, and two critical prognostic ATGs (CXCR4 and ERBB2) were identified by multivariate Cox regression analysis. Patients were divided into high-risk and low-risk groups according to the differential expression of these two ATGs. Kaplan–Meier (KM) curves showed a significant difference in survival time between the two groups. The critical prognostic ATGs were combined with race, age, and stage in a multifactorial regression analysis, and the final prognostic model was produced as a line graph.

Conclusion

The prognostic model of autophagy-related genes composed of the CXCR4 gene and ERBB2 gene has a specific predictive value for the prognosis of WT, and the present study provides a clear basis for future research on biomarkers and therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Bozlu G, Citak EC (2018) Evaluation of renal tumors in children. Turk J Urol 44(3):268–273. https://doi.org/10.5152/tud.2018.70120

    Article  PubMed  PubMed Central  Google Scholar 

  2. Guimei M, Eladl MA, Ranade AV et al (2019) Autophagy related markers (Beclin-1 and ATG4B) are strongly expressed in Wilms’ tumor and correlate with favorable histology. Histol Histopathol 34(1):47–56. https://doi.org/10.14670/hh-18-023

    Article  CAS  PubMed  Google Scholar 

  3. Ashford TP, Porter KR (1962) Cytoplasmic components in hepatic cell lysosomes. J Cell Bio 12(1):198–202. https://doi.org/10.1083/jcb.12.1.198

    Article  CAS  Google Scholar 

  4. Li YJ, Lei YH, Yao N et al (2017) Autophagy and multidrug resistance in cancer. Chin J Cancer 36(1):52. https://doi.org/10.1186/s40880-017-0219-2

    Article  PubMed  PubMed Central  Google Scholar 

  5. Izdebska M, Zielińska W, Hałas-Wiśniewska M et al (2019) Involvement of actin in autophagy and autophagy-dependent multidrug resistance in cancer. Cancers 11(8):1209. https://doi.org/10.3390/cancers11081209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Antunes F, Erustes AG, Costa AJ et al (2018) Autophagy and intermittent fasting: the connection for cancer therapy? Clinics (Sao Paulo, Brazil) 73(suppl 1):e814s. https://doi.org/10.6061/clinics/2018/e814s

    Article  PubMed  Google Scholar 

  7. Leri M, Scuto M, Ontario ML et al (2020) Healthy effects of plant polyphenols: molecular mechanisms. Int J Mol Sci 21(4):1250. https://doi.org/10.3390/ijms21041250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Qu X, Yu J, Bhagat G et al (2003) Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 112(12):1809–1820. https://doi.org/10.1172/jci20039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. White E, DiPaola RS (2009) The double-edged sword of autophagy modulation in cancer. Clin Cancer Res 15(17):5308–5316. https://doi.org/10.1158/1078-0432.Ccr-07-5023

    Article  PubMed  PubMed Central  Google Scholar 

  10. Butera G, Mullappilly N, Masetto F et al (2019) Regulation of autophagy by nuclear GAPDH and its aggregates in cancer and neurodegenerative disorders. Int J Mol Sci 20(9):2062. https://doi.org/10.3390/ijms20092062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Joffre C, Djavaheri-Mergny M, Pattingre S, Giuriato S (2017) L’autophagie: le yin et le yang des cancers [The yin and the yang of autophagy in cancer cells]. Med Sci (Paris) 33(3):328–334. https://doi.org/10.1051/medsci/20173303021

    Article  PubMed  Google Scholar 

  12. Jin S (2006) Autophagy, mitochondrial quality control, and oncogenesis. Autophagy 2(2):80–84. https://doi.org/10.4161/auto.2.2.2460

    Article  CAS  PubMed  Google Scholar 

  13. Yun CW, Lee SH (2018) The roles of autophagy in cancer. Int J Mol Sci. https://doi.org/10.3390/ijms19113466

    Article  PubMed  PubMed Central  Google Scholar 

  14. Li X, Fan Z (2010) The epidermal growth factor receptor antibody cetuximab induces autophagy in cancer cells by downregulating HIF-1alpha and Bcl-2 and activating the beclin 1/hVps34 complex. Cancer Res 70(14):5942–5952. https://doi.org/10.1158/0008-5472.CAN-10-0157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sridhar S, Botbol Y, Macian F et al (2012) Autophagy and disease: always two sides to a problem. J Pathol 226(2):255–273. https://doi.org/10.1002/path.3025

    Article  PubMed  Google Scholar 

  16. Bertout JA, Patel SA, Simon MC (2008) The impact of O2 availability on human cancer. Nat Rev Cancer 8(12):967–975. https://doi.org/10.1038/nrc2540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang J, Wang J, Sun Y, Song W, Nor JE, Wang CY, Taichman RS (2005) Diverse signaling pathways through the SDF-1/CXCR4 chemokine axis in prostate cancer cell lines leads to altered patterns of cytokine secretion and angiogenesis. Cell Signal 17(12):1578–1592. https://doi.org/10.1016/j.cellsig.2005.03.022. (Retraction in: Cell Signal. 2021Apr; 80: 109909)

    Article  CAS  PubMed  Google Scholar 

  18. Feng Y, Broder CC, Kennedy PE et al (1996) HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane G protein-coupled receptor. Science 272(5263):872–877. https://doi.org/10.1126/science.272.5263.872

    Article  CAS  PubMed  Google Scholar 

  19. Burger JA, Burger M, Kipps TJ (1999) Chronic lymphocytic leukemia B cells express functional CXCR4 chemokine receptors that mediate spontaneous migration beneath bone marrow stromal cells. Blood 94(11):3658–3667

    Article  CAS  PubMed  Google Scholar 

  20. Müller A, Homey B, Soto H et al (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410(6824):50–56. https://doi.org/10.1038/35065016

    Article  PubMed  Google Scholar 

  21. Darash-Yahana M, Pikarsky E, Abramovitch R, Zeira E, Pal B, Karplus R, Beider K, Avniel S, Kasem S, Galun E, Peled A (2004) Role of high expression levels of CXCR4 in tumor growth, vascularization, and metastasis. FASEB J 18(11):1240–1242. https://doi.org/10.1096/fj.03-0935fje

    Article  CAS  PubMed  Google Scholar 

  22. Furusato B, Mohamed A, Uhlén M et al (2010) CXCR4 and cancer. Pathol Int 60(7):497–505. https://doi.org/10.1111/j.1440-1827.2010.02548.x

    Article  CAS  PubMed  Google Scholar 

  23. Vandercappellen J, Van Damme J, Struyf S (2008) The role of CXC chemokines and their receptors in cancer. Cancer Lett 267(2):226–244. https://doi.org/10.1016/j.canlet.2008.04.050

    Article  CAS  PubMed  Google Scholar 

  24. Eck SM, Côté AL, Winkelman WD, Brinckerhoff CE (2009) CXCR4 and matrix metalloproteinase-1 are elevated in breast carcinoma-associated fibroblasts and in normal mammary fibroblasts exposed to factors secreted by breast cancer cells. Mol Cancer Res 7(7):1033–1044. https://doi.org/10.1158/1541-7786.Mcr-09-0015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kojima Y, Acar A, Eaton EN et al (2010) Autocrine TGF-beta and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proc Natl Acad Sci U S A 107(46):20009–20014. https://doi.org/10.1073/pnas.1013805107

    Article  PubMed  PubMed Central  Google Scholar 

  26. Klein S, Abraham M, Bulvik B, Dery E, Weiss ID, Barashi N, Abramovitch R, Wald H, Harel Y, Olam D, Weiss L, Beider K, Eizenberg O, Wald O, Galun E, Pereg Y, Peled A (2018) CXCR4 promotes neuroblastoma growth and therapeutic resistance through miR-15a/16-1-mediated ERK and BCL2/Cyclin D1 pathways. Cancer Res 78(6):1471–1483. https://doi.org/10.1158/0008-5472

    Article  PubMed  Google Scholar 

  27. Peitzsch C, Kurth I, Kunz-Schughart L et al (2013) Discovery of the cancer stem cell related determinants of radioresistance. Radiother Oncol 108(3):378–387. https://doi.org/10.1016/j.radonc.2013.06.003

    Article  PubMed  Google Scholar 

  28. Bazley LA, Gullick WJ (2005) The epidermal growth factor receptor family. Endocr Relat Cancer 12(Suppl 1):S17-27. https://doi.org/10.1677/erc.1.01032

    Article  CAS  PubMed  Google Scholar 

  29. Holbro T, Hynes NE (2004) ErbB receptors: directing key signaling networks throughout life. Annu Rev Pharmacol Toxicol 44:195–217. https://doi.org/10.1146/annurev.pharmtox.44.101802.121440

    Article  CAS  PubMed  Google Scholar 

  30. King CR, Kraus MH, Aaronson SA (1985) Amplification of a novel v-erbB-related gene in a human mammary carcinoma. Science 229(4717):974–976. https://doi.org/10.1126/science.2992089

    Article  CAS  PubMed  Google Scholar 

  31. Slamon DJ, Clark GM, Wong SG et al (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235(4785):177–182. https://doi.org/10.1126/science.3798106

    Article  CAS  PubMed  Google Scholar 

  32. He C, Bian XY, Ni XZ et al (2013) Correlation of human epidermal growth factor receptor 2 expression with clinicopathological characteristics and prognosis in gastric cancer. World J Gastroenterol 19(14):2171–2178. https://doi.org/10.3748/wjg.v19.i14.2171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Baykara M, Benekli M, Ekinci O et al (2015) Clinical significance of HER2 overexpression in gastric and gastroesophageal junction cancers. J Gastrointest Surg 19(9):1565–1571. https://doi.org/10.1007/s11605-015-2888-y

    Article  PubMed  Google Scholar 

  34. Kurokawa Y, Matsuura N, Kimura Y et al (2015) Multicenter large-scale study of prognostic impact of HER2 expression in patients with resectable gastric cancer. Gastric Cancer 18(4):691–697. https://doi.org/10.1007/s10120-014-0430-7

    Article  CAS  PubMed  Google Scholar 

  35. Allgayer H, Babic R, Gruetzner KU, Tarabichi A, Schildberg FW, Heiss MM (2000) c-erbB-2 is of independent prognostic relevance in gastric cancer and is associated with the expression of tumor-associated protease systems. J Clin Oncol 18(11):2201–2209. https://doi.org/10.1200/JCO.2000.18.11.2201

    Article  CAS  PubMed  Google Scholar 

  36. Wang S, Zheng G, Chen L et al (2011) Effect of HER-2/neu over-expression on prognosis in gastric cancer: a meta-analysis. Asian Pac J Cancer Prev 12(6):1417–1423

    PubMed  Google Scholar 

  37. Park DI, Yun JW, Park JH et al (2006) HER-2/neu amplification is an independent prognostic factor in gastric cancer. Dig Dis Sci 51(8):1371–1379. https://doi.org/10.1007/s10620-005-9057-1

    Article  CAS  PubMed  Google Scholar 

  38. Buza N (2021) HER2 testing in endometrial serous carcinoma: time for standardised pathology practice to meet the clinical demand. Arch Pathol Lab Med 145(6):687–691. https://doi.org/10.5858/arpa.2020-0207-RA

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

HYS: Designed the study; analyzed the data; drafted the initial manuscript; and reviewed and revised the manuscript. MZ: Designed the study; reviewed and revised the manuscript; critically revised the manuscript YBZ: reviewed and revised the manuscript; critically revised the manuscript All authors approved the final manuscript as submitted and agree to be accountable for all aspects of work.

Corresponding author

Correspondence to Min Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, H., Zhang, M. & Zhang, Y. Construction of a prognostic model for autophagy in Wilm's tumor. Pediatr Surg Int 40, 122 (2024). https://doi.org/10.1007/s00383-024-05712-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00383-024-05712-1

Keywords

Navigation