Skip to main content

Advertisement

Log in

Relationship between gene expression networks and muscle contractile physiology differences in Anolis lizards

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Muscles facilitate most animal behavior, from eating to fleeing. However, to generate the variation in behavior necessary for survival, different muscles must perform differently; for instance, sprinting requires multiple rapid muscle contractions, whereas biting may require fewer contractions but greater force. Here, we use a transcriptomic approach to identify genes associated with variation in muscle contractile physiology among different muscles from the same individual. We measured differential gene expression between a leg and jaw muscle of Anolis lizards known to differ in muscle contractile physiology and performance. For each individual, one muscle was used to measure muscle contractile physiology, including contractile velocity (Vmax and V40), specific tension, power ratio, and twitch time, whereas the contralateral muscle was used to extract RNA for transcriptomic sequencing. Using the transcriptomic data, we found clear clustering of muscle type. Expression of genes clustered in gene ontology (GO) terms related to muscle contraction and extracellular matrix was, on average, negatively correlated with Vmax and slower twitch times but positively correlated to power ratio and V40. Conversely, genes related to the GO terms related to aerobic respiration were downregulated in muscles with higher power ratio and V40, and over-expressed as twitch time decreased. Determining the molecular mechanisms that underlie variation in muscle contractile physiology can begin to explain how organisms are able to optimize behavior under variable conditions. Future studies pursuing the effects of differential gene expression across muscle types in different environments might inform researchers about how differences develop across species, populations, and individuals varying in ecological history.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

Physiology data have been made available in the tables found in the online resources this manuscript. RNA-seq data is available through NCBI’s GEO.

Code availability

Code is available at www.github.com/alliebl/anolis_j_v_l.

References

  • Alföldi J, Di Palma F, Grabherr M, Williams C, Kong L, Mauceli E, Russell P, Lowe CB, Glor RE, Jaffe JD (2011) The genome of the green anole lizard and a comparative analysis with birds and mammals. Nature 477(7366):587–591

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anderson CV, Roberts TJ (2020) The need for speed: functional specializations of locomotor and feeding muscles in Anolis lizards. J Exp Biol 223(2):jeb213397. https://doi.org/10.1242/jeb.213397

    Article  PubMed  Google Scholar 

  • Barabási A-L, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512

    Article  PubMed  Google Scholar 

  • Bennett AF, Huey R (1990) Studying the evolution of physiological performance. Oxf Surv Evol Biol 7:251–284

    Google Scholar 

  • Bennett AF, Licht P (1972) Anaerobic metabolism during activity in lizards. J Comp Physiol 81(3):277–288

    Article  Google Scholar 

  • Bottinelli R, Schiaffino S, Reggiani C (1991) Force-velocity relations and myosin heavy chain isoform compositions of skinned fibres from rat skeletal muscle. J Physiol 437(1):655–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bray MS, Hagberg JM, Perusse L, Rankinen T, Roth SM, Wolfarth B, Bouchard C (2009) The human gene map for performance and health-related fitness phenotypes: the 2006–2007 update. Med Sci Sports Exerc 41(1):34–72

    Article  CAS  Google Scholar 

  • de Mello PLH, Hime PM, Glor RE (2021) Transcriptomic analysis of skin color in anole lizards. Genome Biol Evol 13(7):evab110

    Article  PubMed  PubMed Central  Google Scholar 

  • Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21

    Article  CAS  PubMed  Google Scholar 

  • Drexler HCA, Ruhs A, Konzer A, Mendler L, Bruckskotten M, Looso M, Günther S, Boettger T, Krüger M, Braun T (2012) On marathons and sprints: an integrated quantitative proteomics and transcriptomics analysis of differences between slow and fast muscle fibers. Mol Cell Proteomics 11(6):M111.010801. https://doi.org/10.1074/mcp.M111.010801

    Article  CAS  PubMed  Google Scholar 

  • Eckalbar WL, Hutchins ED, Markov GJ, Allen AN, Corneveaux JJ, Lindblad-Toh K, Di Palma F, Alföldi J, Huentelman MJ, Kusumi K (2013) Genome reannotation of the lizard Anolis carolinensis based on 14 adult and embryonic deep transcriptomes. BMC Genomics 14(1):1–11

    Article  CAS  Google Scholar 

  • Frantz C, Stewart KM, Weaver VM (2010) The extracellular matrix at a glance. J Cell Sci 123(24):4195–4200. https://doi.org/10.1242/jcs.023820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrel A, Vanhooydonck B, Porck J, Irschick DJ (2008) Anatomical basis of differences in locomotor behavior in Anolis lizards: a comparison between two ecomorphs. Bull Museum Compar Zool 159(4):213–238

    Article  Google Scholar 

  • Hertz PE, Arima Y, Harrison A, Huey RB, Losos JB, Glor RE (2013) Asynchronous evolution of physiology and morphology in Anolis lizards. Evolution 67(7):2101–2113

    Article  PubMed  Google Scholar 

  • Hill AV (1938) The heat of shortening and the dynamic constants of muscle. Proc R Soc Lond Ser B-Biol Sci 126(843):136–195

    Google Scholar 

  • Hodgins-Davis A, Townsend JP (2009) Evolving gene expression: from G to E to G × E. Trends Ecol Evol 24(12):649–658

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44

    Article  CAS  Google Scholar 

  • Jiang Y, Johnson JD, Rall JA (1996) Parvalbumin relaxes frog skeletal muscle when sarcoplasmic reticulum Ca (2+)-ATPase is inhibited. Am J Physiol Cell Physiol 270(2):C411–C417

    Article  CAS  Google Scholar 

  • Josephson R (1973) Contraction kinetics of the fast muscles used in singing by a katydid. J Exp Biol 59(3):781–801

    Article  Google Scholar 

  • Kabelik D, Julien AR, Ramirez D, O’Connell LA (2021) Social boldness correlates with brain gene expression in male green anoles. Horm Behav 133:105007

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly SA, Nehrenberg DL, Hua K, Garland T Jr, Pomp D (2014) Quantitative genomics of voluntary exercise in mice: transcriptional analysis and mapping of expression QTL in muscle. Physiol Genomics 46(16):593–601

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lailvaux SP, Irschick DJ (2007) The evolution of performance-based male fighting ability in Caribbean Anolis lizards. Am Nat 170(4):573–586

    Article  PubMed  Google Scholar 

  • Lailvaux SP, Herrel A, VanHooydonck B, Meyers JJ, Irschick DJ (2004) Performance capacity, fighting tactics and the evolution of life–stage male morphs in the green anole lizard (Anolis carolinensis). Proc R Soc Lond B 271(1556):2501–2508

    Article  Google Scholar 

  • Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9(1):559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lännergren J, Elzinga G, Stienen G (1993) Force relaxation, labile heat and parvalbumin content of skeletal muscle fibres of Xenopus laevis. J Physiol 463(1):123–140

    Article  PubMed  PubMed Central  Google Scholar 

  • Law CW, Chen Y, Shi W, Smyth GK (2014) voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol 15(2):R29. https://doi.org/10.1186/gb-2014-15-2-r29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lightfoot JT, De Geus EJC, Booth FW, Bray MS, Den Hoed M, Kaprio J, Kelly SA, Pomp D, Saul MC, Thomis MA, Garland T Jr, Bouchard C (2018) Biological/genetic regulation of physical activity level: consensus from GenBioPAC. Med Sci Sports Exerc 50(4):863–873. https://doi.org/10.1249/MSS.0000000000001499

    Article  PubMed  PubMed Central  Google Scholar 

  • López-Maury L, Marguerat S, Bähler J (2008) Tuning gene expression to changing environments: from rapid responses to evolutionary adaptation. Nat Rev Genet 9(8):583

    Article  PubMed  CAS  Google Scholar 

  • Losos JB (1990) The evolution of form and function: morphology and locomotor performance in West Indian Anolis lizards. Evolution 44(5):1189–1203

    Article  PubMed  Google Scholar 

  • Losos JB (2009) Lizards in an evolutionary tree: ecology and adaptive radiation of anoles, vol 10. Univ of California Press

  • Losos JB, Sinervo B (1989) The effects of morphology and perch diameter on sprint performance of Anolis lizards. J Exp Biol 145(1):23–30

    Article  Google Scholar 

  • Makhnovskii PA, Bokov RO, Kolpakov FA, Popov DV (2021) Transcriptomic signatures and upstream regulation in human skeletal muscle adapted to disuse and aerobic exercise. Int J Mol Sci 22(3):1208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marsh RL (1988) Ontogenesis of contractile properties of skeletal muscle and sprint performance in the lizard Dipsosaurus dorsalis. J Exp Biol 137(1):119–139

    Article  CAS  PubMed  Google Scholar 

  • Marsh RL, Bennett AF (1986) Thermal dependence of sprint performance of the lizard Sceloporus occidentalis. J Exp Biol 126(1):79–87

    Article  CAS  PubMed  Google Scholar 

  • McCarthy DJ, Chen Y, Smyth GK (2012) Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res 40(10):4288–4297. https://doi.org/10.1093/nar/gks042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medler S (2019) Mixing it up: the biological significance of hybrid skeletal muscle fibers. J Exp Biol 222:23

    Article  Google Scholar 

  • Müntener M, Käser L, Weber J, Berchtold MW (1995) Increase of skeletal muscle relaxation speed by direct injection of parvalbumin cDNA. Proc Natl Acad Sci 92(14):6504–6508

    Article  PubMed  PubMed Central  Google Scholar 

  • Petretto E, Mangion J, Dickens NJ, Cook SA, Kumaran MK, Lu H, Fischer J, Maatz H, Kren V, Pravenec M, Hubner N, Aitman TJ (2006) Heritability and tissue specificity of expression quantitative trait loci. PLoS Genet 2(10):e172. https://doi.org/10.1371/journal.pgen.0020172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pillon NJ, Gabriel BM, Dollet L, Smith JA, Puig LS, Botella J, Bishop DJ, Krook A, Zierath JR (2020) Transcriptomic profiling of skeletal muscle adaptations to exercise and inactivity. Nat Commun 11(1):1–15

    Article  CAS  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, Heisterkamp S, Van Willigen B, Maintainer R (2017) Package ‘nlme’. In: Linear and nonlinear mixed effects models, version 3 , p 1

  • Porter JD, Khanna S, Kaminski HJ, Rao JS, Merriam AP, Richmonds CR, Leahy P, Li J, Andrade FH (2001) Extraocular muscle is defined by a fundamentally distinct gene expression profile. Proc Natl Acad Sci 98(21):12062–12067. https://doi.org/10.1073/pnas.211257298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purslow PP (2010) Muscle fascia and force transmission. J Bodyw Mov Ther 14(4):411–417

    Article  PubMed  Google Scholar 

  • Purslow PP (2020) The structure and role of intramuscular connective tissue in muscle function. Front Physiol 11:495

    Article  PubMed  PubMed Central  Google Scholar 

  • R Core Team (2019) R: a language and environment for statistical computing. Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Rankinen T, Pérusse L, RauramaaRivera RMA, Wolfarth B, Bouchard C (2001) The human gene map for performance and health-related fitness phenotypes. Med Sci Sports Exerc 33(6):855–867

    Article  CAS  PubMed  Google Scholar 

  • Rasband W (1997–2018) ImageJ. US National Institutes of Health, Bethesda, Maryland, USA

  • Rasys AM, Park S, Ball RE, Alcala AJ, Lauderdale JD, Menke DB (2019) CRISPR-Cas9 gene editing in lizards through microinjection of unfertilized oocytes. Cell Rep 28(9):2288–2292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43(7):e47–e47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140

    Article  CAS  PubMed  Google Scholar 

  • Schiaffino S, Reggiani C (2011) Fiber types in mammalian skeletal muscles. Physiol Rev 91(4):1447–1531

    Article  CAS  PubMed  Google Scholar 

  • Simms D, Cizdziel PE, Chomczynski P (1993) TRIzol: A new reagent for optimal single-step isolation of RNA. Focus 15(4):532–535

    Google Scholar 

  • Staron RS (1997) Human skeletal muscle fiber types: delineation, development, and distribution. Can J Appl Physiol 22(4):307–327

    Article  CAS  PubMed  Google Scholar 

  • Storz JF, Bridgham JT, Kelly SA Jr (2015) Genetic approaches in comparative and evolutionary physiology. Am J Physiol Regul Integr Compara Physiol 309(3):R197–R214. https://doi.org/10.1152/ajpregu.00100.2015

    Article  CAS  Google Scholar 

  • Terry EE, Zhang X, Hoffmann C, Hughes LD, Lewis SA, Li J, Wallace MJ, Riley LA, Douglas CM, Gutierrez-Monreal MA (2018) Transcriptional profiling reveals extraordinary diversity among skeletal muscle tissues. Elife 7:e34613

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Horvath S (2005) A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 4:1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank James Stroud for animal collection assistance in Florida and Rachel Drown for animal care assistance at USD.

Funding

This work was supported by the National Science Foundation (IOS 1354620 to T.J.R.); the University of South Dakota Arts and Sciences (to A.L.L. and C.V.A.); the University of South Dakota Center for Academic and Global Engagement (to L.B.S.); and the University of South Dakota Sanford School of Medicine Scholarship Pathways Program (to L.B.S.).

Author information

Authors and Affiliations

Authors

Contributions

The study was conceived and designed by ALL, CVA, LBS, and TJR. Experiments were completed by CVA, LBS, and ALL. Data were analyzed by LBS, ALL, AK, and MHHW. The first draft of the manuscript was written by LBS, ALL, and CVA, and all authors commented on subsequent versions of the manuscript.

Corresponding author

Correspondence to Andrea L. Liebl.

Ethics declarations

Conflicts of interest

No conflicts of interests or competing interests are declared.

Ethics approval

All live animal research methods were approved by the University of South Dakota’s IACUC committee (AUP 16–35) and research in Costa Rica was performed under research (SINAC-SE-CUSBSE-PI-R-0126–2017), collection (189–2017), and export (III-DGVS-2018) permits to C.V.A.

Consent to participate

N/A.

Consent for publication

N/A.

Additional information

Communicated by H.V. Carey.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, L.B., Anderson, C.V., Withangage, M.H.H. et al. Relationship between gene expression networks and muscle contractile physiology differences in Anolis lizards. J Comp Physiol B 192, 489–499 (2022). https://doi.org/10.1007/s00360-022-01441-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-022-01441-w

Keywords

Navigation