Skip to main content

Advertisement

Log in

Concise review: The heterogenous roles of BATF3 in cancer oncogenesis and dendritic cells and T cells differentiation and function considering the importance of BATF3-dependent dendritic cells

  • REVIEW
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

The transcription factor, known as basic leucine zipper ATF-like 3 (BATF3), is a crucial contributor to the development of conventional type 1 dendritic cells (cDC1), which is definitely required for priming CD8 + T cell-mediated immunity against intracellular pathogens and malignancies. In this respect, BATF3-dependent cDC1 can bring about immunological tolerance, an autoimmune response, graft immunity, and defense against infectious agents such as viruses, microbes, parasites, and fungi. Moreover, the important function of cDC1 in stimulating CD8 + T cells creates an excellent opportunity to develop a highly effective target for vaccination against intracellular pathogens and diseases. BATF3 has been clarified to control the development of CD8α+ and CD103+ DCs. The presence of BATF3-dependent cDC1 in the tumor microenvironment (TME) reinforces immunosurveillance and improves immunotherapy approaches, which can be beneficial for cancer immunotherapy. Additionally, BATF3 acts as a transcriptional inhibitor of Treg development by decreasing the expression of the transcription factor FOXP3. However, when overexpressed in CD8 + T cells, it can enhance their survival and facilitate their transition to a memory state. BATF3 induces Th9 cell differentiation by binding to the IL-9 promoter through a BATF3/IRF4 complex. One of the latest research findings is the oncogenic function of BATF3, which has been approved and illustrated in several biological processes of proliferation and invasion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arnold IC, Zhang X, Artola-Boran M, Fallegger A, Sander P, Johansen P et al (2019) BATF3-dependent dendritic cells drive both effector and regulatory T-cell responses in bacterially infected tissues. PLoS Pathog 15(6):e1007866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aronheim A, Zandi E, Hennemann H, Elledge SJ, Karin M (1997) Isolation of an AP-1 repressor by a novel method for detecting protein-protein interactions. Mol Cell Biol 17(6):3094–3102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ataide MA, Komander K, Knöpper K, Peters AE, Wu H, Eickhoff S et al (2020) BATF3 programs CD8+ T cell memory. Nat Immunol 21(11):1397–1407

    Article  CAS  PubMed  Google Scholar 

  • Atif SM, Nelsen MK, Gibbings SL, Desch AN, Kedl RM, Gill RG et al (2015) Cutting edge: roles for Batf3-dependent APCs in the rejection of minor histocompatibility antigen–mismatched grafts. J Immunol 195(1):46–50

    Article  CAS  PubMed  Google Scholar 

  • Bachem A, Güttler S, Hartung E, Ebstein F, Schaefer M, Tannert A et al (2010) Superior antigen cross-presentation and XCR1 expression define human CD11c+ CD141+ cells as homologues of mouse CD8+ dendritic cells. J Exp Med 207(6):1273–1281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bachem A, Hartung E, Güttler S, Mora A, Zhou X, Hegemann A et al (2012) Expression of XCR1 characterizes the Batf3-dependent lineage of dendritic cells capable of antigen cross-presentation. Front Immunol 3:214

    Article  PubMed  PubMed Central  Google Scholar 

  • Bagadia P, Huang X, Liu T-T, Durai V, Grajales-Reyes GE, Nitschke M et al (2019) An Nfil3–Zeb2–Id2 pathway imposes Irf8 enhancer switching during cDC1 development. Nat Immunol 20(9):1174–1185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benckendorff J, Kuchar J, Leithäuser F, Zahn M, Möller P (2021) Usefulness of BATF3 immunohistochemistry in diagnosing classical Hodgkin lymphoma. Diagnostics 11(6):1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bödder J, Zahan T, Van Slooten R, Schreibelt G, De Vries IJM, Flórez-Grau G (2021) Harnessing the cDC1-NK cross-talk in the tumor microenvironment to battle cancer. Front Immunol 11:631713

    Article  PubMed  PubMed Central  Google Scholar 

  • Böttcher JP, Bonavita E, Chakravarty P, Blees H, Cabeza-Cabrerizo M, Sammicheli S et al (2018) NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell 172(5):1022–1037.e14

    Article  PubMed  PubMed Central  Google Scholar 

  • Bower KE, Zeller RW, Wachsman W, Martinez T, McGuire KL (2002) Correlation of transcriptional repression by p21SNFT with changes in DNA· NF-AT complex interactions. J Biol Chem 277(38):34967–34977

    Article  CAS  PubMed  Google Scholar 

  • Break TJ, Hoffman KW, Swamydas M, Lee CC, Lim JK, Lionakis MS (2016) Batf3-dependent CD103+ dendritic cell accumulation is dispensable for mucosal and systemic antifungal host defense. Virulence 7(7):826–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao W (2009) Molecular characterization of human plasmacytoid dendritic cells. J Clin Immunol 29(3):257–264

    Article  CAS  PubMed  Google Scholar 

  • Cao L, Liu Y, Wang D, Huang L, Li F, Liu J et al (2018) MiR-760 suppresses human colorectal cancer growth by targeting BATF3/AP-1/cyclinD1 signaling. J Exp Clin Cancer Res 37(1):1–14

    Article  Google Scholar 

  • Chandra J, Kuo PT, Hahn AM, Belz GT, Frazer IH (2017) Batf3 selectively determines acquisition of CD8+ dendritic cell phenotype and function. Immunol Cell Biol 95(2):215–223

    Article  CAS  PubMed  Google Scholar 

  • Chauhan KS, Das A, Jaiswal H, Saha I, Kaushik M, Patel VK et al (2022) IRF8 and BATF3 interaction enhances the cDC1 specific Pfkfb3 gene expression. Cell Immunol 371:104468

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Zhang D, Zhang W, Zhu Y, Hou M, Yang B et al (2017) Absence of Batf3 results in reduced liver pathology in mice infected with Schistosoma japonicum. Parasit Vectors 10(1):1–9

    Article  Google Scholar 

  • Chen T, Cao Q, Wang R, Zheng G, Azmi F, Wang J et al (2021) Conventional type 1 dendritic cells (cDC1) in human kidney diseases: clinico-pathological correlations. Front Immunol 12:635212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chrisikos TT, Zhou Y, Li HS, Babcock RL, Wan X, Patel B et al (2020) STAT3 inhibits CD103+ cDC1 vaccine efficacy in murine breast cancer. Cancers 12(1):128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark SE, Schmidt RL, McDermott DS, Lenz LL (2018) A Batf3/Nlrp3/IL-18 axis promotes natural killer cell IL-10 production during Listeria monocytogenes infection. Cell Rep 23(9):2582–2594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collin M, Bigley V (2018) Human dendritic cell subsets: an update. Immunol 154(1):3–20

    Article  CAS  Google Scholar 

  • Coombes JL, Siddiqui KR, Arancibia-Cárcamo CV, Hall J, Sun C-M, Belkaid Y et al (2007) A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β–and retinoic acid–dependent mechanism. J Exp Med 204(8):1757–1764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crespo HJ, Lau JT, Videira PA (2013) Dendritic cells: a spot on sialic acid. Front Immunol 4:491

    Article  PubMed  PubMed Central  Google Scholar 

  • Cueto FJ, Del Fresno C, Brandi P, Combes AJ, Hernández-García E, Sánchez-Paulete AR et al (2021) DNGR-1 limits Flt3L-mediated antitumor immunity by restraining tumor-infiltrating type I conventional dendritic cells. J Immunother Cancer 9(5):e002054

    Article  PubMed  PubMed Central  Google Scholar 

  • Dai P, Wang W, Yang N, Serna-Tamayo C, Ricca JM, Zamarin D et al (2017) Intratumoral delivery of inactivated modified vaccinia virus Ankara (iMVA) induces systemic antitumor immunity via STING and Batf3-dependent dendritic cells. Sci Immunol 2(11):eaal1713

    Article  PubMed  PubMed Central  Google Scholar 

  • Dalod M, Chelbi R, Malissen B, Lawrence T (2014) Dendritic cell maturation: functional specialization through signaling specificity and transcriptional programming. EMBO J 33(10):1104–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deets KA, Doyle RN, Rauch I, Vance RE (2021) Inflammasome activation leads to cDC1-independent cross-priming of CD8 T cells by epithelial cell-derived antigen. Elife 10:e72082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desai P, Tahiliani V, Abboud G, Stanfield J, Salek-Ardakani S (2018) Batf3-dependent dendritic cells promote optimal CD8 T cell responses against respiratory poxvirus infection. J Virol 92(16):e00495-e518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dorsey MJ, Tae H-J, Sollenberger KG, Mascarenhas NT, Johansen LM, Taparowsky EJ (1995) B-ATF: a novel human bZIP protein that associates with members of the AP-1 transcription factor family. Oncogene 11(11):2255–2266

    CAS  PubMed  Google Scholar 

  • Durai V, Bagadia P, Granja JM, Satpathy AT, Kulkarni DH, Davidson JT et al (2019) Cryptic activation of an Irf8 enhancer governs cDC1 fate specification. Nat Immunol 20(9):1161–1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edelson BT, Wumesh KC, Juang R, Kohyama M, Benoit LA, Klekotka PA et al (2010) Peripheral CD103+ dendritic cells form a unified subset developmentally related to CD8α+ conventional dendritic cells. J Exp Med 207(4):823–836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edelson BT, Bradstreet TR, Kc W, Hildner K, Herzog JW, Sim J et al (2011) Batf3-dependent CD11blow/− peripheral dendritic cells are GM-CSF-independent and are not required for Th cell priming after subcutaneous immunization. PLoS ONE 6(10):e25660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellenberger T (1994) Getting a grip on DNA recognition: structures of the basic region leucine zipper, and the basic region helix-loop-helix DNA-binding domains. Curr Opin Struct Biol 4(1):12–21

    Article  CAS  Google Scholar 

  • El-Sayes N, Vito A, Salem O, Workenhe ST, Wan Y, Mossman K (2022) A Combination of chemotherapy and oncolytic virotherapy sensitizes colorectal adenocarcinoma to immune checkpoint inhibitors in a cDC1-dependent manner. Int J Mol Sci 23(3):1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engler DB, Reuter S, van Wijck Y, Urban S, Kyburz A, Maxeiner J et al (2014) Effective treatment of allergic airway inflammation with Helicobacter pylori immunomodulators requires BATF3-dependent dendritic cells and IL-10. Proc Natl Acad Sci 111(32):11810–11815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferris ST, Carrero JA, Mohan JF, Calderon B, Murphy KM, Unanue ER (2014) A minor subset of Batf3-dependent antigen-presenting cells in islets of Langerhans is essential for the development of autoimmune diabetes. Immunity 41(4):657–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferris ST, Durai V, Wu R, Theisen DJ, Ward JP, Bern MD et al (2020) cDC1 prime and are licensed by CD4+ T cells to induce anti-tumour immunity. Nature 584(7822):624–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghislat G, Cheema AS, Baudoin E, Verthuy C, Ballester PJ, Crozat K et al (2021) NF-κB–dependent IRF1 activation programs cDC1 dendritic cells to drive antitumor immunity. Sci Immunol 6(61):eabg3570

    Article  CAS  PubMed  Google Scholar 

  • Gil-Pulido J, Cochain C, Lippert MA, Schneider N, Butt E, Amézaga N et al (2017) Deletion of Batf3-dependent antigen-presenting cells does not affect atherosclerotic lesion formation in mice. PLoS ONE 12(8):e0181947

    Article  PubMed  PubMed Central  Google Scholar 

  • Gottschalk C, Damuzzo V, Gotot J, Kroczek RA, Yagita H, Murphy KM et al (2013) Batf3-dependent dendritic cells in the renal lymph node induce tolerance against circulating antigens. J Am Soc Nephrol 24(4):543–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grabowska J, Stolk DA, Nijen Twilhaar MK, Ambrosini M, Storm G, van der Vliet HJ et al (2021a) Liposomal nanovaccine containing α-galactosylceramide and ganglioside GM3 stimulates robust CD8+ T cell responses via CD169+ macrophages and cDC1. Vaccines 9(1):56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grabowska J, Affandi A, van Dinther D, Twilhaar MN, Olesek K, Hoogterp L et al (2021b) Liposome induction of CD8+ T cell responses depends on CD169+ macrophages and Batf3-dependent dendritic cells and is enhanced by GM3 inclusion. J Control Release 331:309–320

    Article  CAS  PubMed  Google Scholar 

  • Grajales-Reyes GE, Iwata A, Albring J, Wu X, Tussiwand R, Kc W et al (2015) Batf3 maintains autoactivation of Irf8 for commitment of a CD8α(+) conventional DC clonogenic progenitor. Nat Immunol 16(7):708–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guilliams M, Ginhoux F, Jakubzick C, Naik SH, Onai N, Schraml BU et al (2014) Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat Rev Immunol 14(8):571–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haniffa M, Shin A, Bigley V, McGovern N, Teo P, See P et al (2012) Human tissues contain CD141hi cross-presenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells. Immunity 37(1):60–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heger L, Balk S, Lühr JJ, Heidkamp GF, Lehmann CHK, Hatscher L et al (2018) CLEC10A is a specific marker for human CD1c(+) dendritic cells and enhances their toll-like receptor 7/8-induced cytokine secretion. Front Immunol 9:744

    Article  PubMed  PubMed Central  Google Scholar 

  • Hildner K, Edelson BT, Purtha WE, Diamond M, Matsushita H, Kohyama M et al (2008) Batf3 deficiency reveals a critical role for CD8α+ dendritic cells in cytotoxic T cell immunity. Science 322(5904):1097–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoeffel G, Ripoche A-C, Matheoud D, Nascimbeni M, Escriou N, Lebon P et al (2007) Antigen crosspresentation by human plasmacytoid dendritic cells. Immunity 27(3):481–492

    Article  CAS  PubMed  Google Scholar 

  • Hubert M, Gobbini E, Couillault C, Manh T-PV, Doffin A-C, Berthet J et al (2020) IFN-III is selectively produced by cDC1 and predicts good clinical outcome in breast cancer. Sci Immunol 5(46):eaav3942

    Article  CAS  PubMed  Google Scholar 

  • Iacobelli M, Wachsman W, McGuire KL (2000) Repression of IL-2 promoter activity by the novel basic leucine zipper p21SNFT protein. J Immunol 165(2):860–868

    Article  CAS  PubMed  Google Scholar 

  • Imperato JN, Xu D, Romagnoli PA, Qiu Z, Perez P, Khairallah C et al (2020) Mucosal CD8 T cell responses are shaped by Batf3-DC after foodborne Listeria monocytogenes infection. Front Immunol 11:575967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inaba K, Inaba M, Romani N, Aya H, Deguchi M, Ikehara S et al (1992) Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med 176(6):1693–1702

    Article  CAS  PubMed  Google Scholar 

  • Jaiswal H, Kaushik M, Sougrat R, Gupta M, Dey A, Verma R, Ozato K, Tailor P (2013) Batf3 and Id2 have a synergistic effect on Irf8-directed classical CD8α+ dendritic cell development. J Immunol 191:5993–6001

    Article  CAS  PubMed  Google Scholar 

  • Joeris T, Gomez-Casado C, Holmkvist P, Tavernier SJ, Silva-Sanchez A, Klotz L et al (2021) Intestinal cDC1 drive cross-tolerance to epithelial-derived antigen via induction of FoxP3+ CD8+ Tregs. Sci Immunol 6(60):eabd3774

    Article  CAS  PubMed  Google Scholar 

  • Kato Y, Steiner TM, Park H-Y, Hitchcock RO, Zaid A, Hor JL et al (2020) Display of native antigen on cDC1 that have spatial access to both T and B cells underlies efficient humoral vaccination. J Immunol 205(7):1842–1856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kilgore AM, Pennock ND, Kedl RM (2020) cDC1 IL-27p28 production predicts vaccine-elicited CD8+ T cell memory and protective immunity. J Immunol 204(3):510–517

    Article  CAS  PubMed  Google Scholar 

  • Krishnamoorthy M, Lenehan JG, Maleki Vareki S (2021) Neoadjuvant immunotherapy for high-risk, resectable malignancies: scientific rationale and clinical challenges. J Natl Cancer Inst 113(7):823–832

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuehlwein JM, Borsche M, Korir PJ, Risch F, Mueller AK, Hübner MP et al (2020) Protection of Batf3-deficient mice from experimental cerebral malaria correlates with impaired cytotoxic T-cell responses and immune regulation. Immunology 159(2):193–204

    Article  CAS  PubMed  Google Scholar 

  • Kuhn NF, Lopez AV, Li X, Cai W, Daniyan AF, Brentjens RJ (2020) CD103+ cDC1 and endogenous CD8+ T cells are necessary for improved CD40L-overexpressing CAR T cell antitumor function. Nat Commun 11(1):1–10

    Article  Google Scholar 

  • Landschulz WH, Johnson PF, McKnight SL (1988) The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Sci 240(4860):1759–1764

    Article  CAS  Google Scholar 

  • Lee W, Kim HS, Hwang SS, Lee GR (2017) The transcription factor Batf3 inhibits the differentiation of regulatory T cells in the periphery. Exp Mol Med 49(11):e393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee WH, Jang SW, Kim HS, Kim SH, Heo JI, Kim GE et al (2019) BATF3 is sufficient for the induction of Il9 expression and can compensate for BATF during Th9 cell differentiation. Exp Mol Med 51(11):1–12

    PubMed  PubMed Central  Google Scholar 

  • Lee AH, Sun L, Mochizuki AY, Reynoso JG, Orpilla J, Chow F et al (2021a) Neoadjuvant PD-1 blockade induces T cell and cDC1 activation but fails to overcome the immunosuppressive tumor associated macrophages in recurrent glioblastoma. Nat Commun 12(1):1–16

    Article  Google Scholar 

  • Lee YS, O’Brien LJ, Walpole CM, Pearson FE, Leal-Rojas IM, Masterman K-A et al (2021b) Human CD141+ dendritic cells (cDC1) are impaired in patients with advanced melanoma but can be targeted to enhance anti-PD-1 in a humanized mouse model. J Immunother Cancer 9(3):e001963

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, Liu X, Duan W, Tian H, Zhu G, He H et al (2017) Batf3-dependent CD8α+ dendritic cells aggravates atherosclerosis via Th1 cell induction and enhanced CCL5 expression in plaque macrophages. EBioMedicine 18:188–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li P, Weng Z, Li P, Hu F, Zhang Y, Guo Z et al (2021) BATF3 promotes malignant phenotype of colorectal cancer through the S1PR1/p-STAT3/miR-155-3p/WDR82 axis. Cancer Gene Ther 28(5):400–412

    Article  CAS  PubMed  Google Scholar 

  • Liang H-C, Costanza M, Prutsch N, Zimmerman MW, Gurnhofer E, Montes-Mojarro IA et al (2021) Super-enhancer-based identification of a BATF3/IL-2R− module reveals vulnerabilities in anaplastic large cell lymphoma. Nat Commun 12(1):1–12

    Article  CAS  Google Scholar 

  • Lin JH, Huffman AP, Wattenberg MM, Walter DM, Carpenter EL, Feldser DM et al (2020) Type 1 conventional dendritic cells are systemically dysregulated early in pancreatic carcinogenesis. J Exp Med 217(8):e20190673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Y, Cheng L, Liu Y, Wang Y, Wang Q, Wang H et al (2021) Intestinal epithelium-derived BATF3 promotes colitis-associated colon cancer through facilitating CXCL5-mediated neutrophils recruitment. Mucosal Immunol 14(1):187–198

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Rozeman EA, O’Donnell JS, Allen S, Fanchi L, Smyth MJ et al (2019) Batf3+ DCs and type I IFN are critical for the efficacy of neoadjuvant cancer immunotherapy. Oncoimmunology 8(2):e1546068

    Article  PubMed  Google Scholar 

  • Lollies A, Hartmann S, Schneider M, Bracht T, Weiss A, Arnolds J et al (2018) An oncogenic axis of STAT-mediated BATF3 upregulation causing MYC activity in classical Hodgkin lymphoma and anaplastic large cell lymphoma. Leukemia 32(1):92–101

    Article  CAS  PubMed  Google Scholar 

  • López-Yglesias AH, Burger E, Camanzo E, Martin AT, Araujo AM, Kwok SF et al (2021) T-bet-dependent ILC1-and NK cell-derived IFN-γ mediates cDC1-dependent host resistance against Toxoplasma gondii. PLoS Pathog 17(1):e1008299

    Article  PubMed  PubMed Central  Google Scholar 

  • Lukowski SW, Rødahl I, Kelly S, Yu M, Gotley J, Zhou C et al (2021) Absence of Batf3 reveals a new dimension of cell state heterogeneity within conventional dendritic cells. Iscience 24(5):102402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacNabb BW, Kline DE, Albright AR, Chen X, Leventhal DS, Savage PA et al (2019) Negligible role for deletion mediated by cDC1 in CD8+ T cell tolerance. J Immunol 202(9):2628–2635

    Article  CAS  PubMed  Google Scholar 

  • Martínez-López M, Iborra S, Conde-Garrosa R, Sancho D (2015) Batf3-dependent CD103+ dendritic cells are major producers of IL-12 that drive local Th1 immunity against Leishmania major infection in mice. Eur J Immunol 45(1):119–129

    Article  PubMed  Google Scholar 

  • Mashayekhi M, Sandau MM, Dunay IR, Frickel EM, Khan A, Goldszmid RS et al (2011) CD8α+ dendritic cells are the critical source of interleukin-12 that controls acute infection by Toxoplasma gondii tachyzoites. Immunity 35(2):249–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattiuz R, Brousse C, Ambrosini M, Cancel J, Bessou G, Mussard J et al (2021) Type 1 conventional dendritic cells and interferons are required for spontaneous CD4+ and CD8+ T-cell protective responses to breast cancer. Clin Transl Immunol 10(7):e1305

    Article  CAS  Google Scholar 

  • Mayer CT, Ghorbani P, Nandan A, Dudek M, Arnold-Schrauf C, Hesse C et al (2014) Selective and efficient generation of functional Batf3-dependent CD103+ dendritic cells from mouse bone marrow. Blood, the Journal of the American Society of Hematology 124(20):3081–3091

    CAS  Google Scholar 

  • Medina BD, Liu M, Vitiello GA, Seifert AM, Zeng S, Bowler T et al (2019) Oncogenic kinase inhibition limits Batf3-dependent dendritic cell development and antitumor immunity. J Exp Med 216(6):1359–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer MA, Baer JM, Knolhoff BL, Nywening TM, Panni RZ, Su X et al (2018) Breast and pancreatic cancer interrupt IRF8-dependent dendritic cell development to overcome immune surveillance. Nat Commun 9(1):1–19

    Article  Google Scholar 

  • Mittal D, Vijayan D, Putz EM, Aguilera AR, Markey KA, Straube J et al (2017) Interleukin-12 from CD103+ Batf3-dependent dendritic cells required for NK-cell suppression of metastasis. Cancer Immunol Res 5(12):1098–1108

    Article  CAS  PubMed  Google Scholar 

  • Molina MS, Stokes J, Hoffman EA, Eremija J, Zeng Y, Simpson RJ et al (2020) Bendamustine conditioning skews murine host DCs toward pre-cDC1s and reduces GVHD independently of Batf3. Front Immunol 11:1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montagna G, Biswas A, Hildner K, Matuschewski K, Dunay I (2015) Batf3 deficiency proves the pivotal role of CD 8α+ dendritic cells in protection induced by vaccination with attenuated Plasmodium sporozoites. Parasite Immunol 37(10):533–543

    Article  CAS  PubMed  Google Scholar 

  • Mott KR, Allen SJ, Zandian M, Konda B, Sharifi BG, Jones C et al (2014) CD8α dendritic cells drive establishment of HSV-1 latency. PLoS ONE 9(4):e93444

    Article  PubMed  PubMed Central  Google Scholar 

  • Mott KR, Maazi H, Allen SJ, Zandian M, Matundan H, Ghiasi YN et al (2015) Batf3 deficiency is not critical for the generation of CD8α+ dendritic cells. Immunobiology 220(4):518–524

    Article  CAS  PubMed  Google Scholar 

  • Murphy TL, Tussiwand R, Murphy KM (2013) Specificity through cooperation: BATF–IRF interactions control immune-regulatory networks. Nat Rev Immunol 13(7):499–509

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa M, Shaffer AL III, Ceribelli M, Zhang M, Wright G, Xiao W et al (2018) Targeting the HTLV-I-regulated BATF3/IRF4 transcriptional network in adult T cell leukemia/lymphoma. Cancer Cell 34(2):286–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakawesi J, This S, Hütter J, Boucard-Jourdin M, Barateau V, Muleta KG et al (2020) αvβ8 integrin-expression by BATF3-dependent dendritic cells facilitates early IgA responses to Rotavirus. Mucosal Immunol 14(1):53–67

    Article  PubMed  Google Scholar 

  • Païdassi H, Acharya M, Zhang A, Mukhopadhyay S, Kwon M, Chow C et al (2011) Preferential expression of integrin αvβ8 promotes generation of regulatory T cells by mouse CD103+ dendritic cells. Gastroenterology 141(5):1813–1820

    Article  PubMed  Google Scholar 

  • Pallazola AM, Rao JX, Mengistu DT, Morcos MS, Toma MS, Stolberg VR et al (2021) Human lung cDC1 drive increased perforin-mediated NK cytotoxicity in chronic obstructive pulmonary disease. American Journal of Physiology-Lung Cellular and Molecular Physiology 321(6):L1183–L1193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel R, Sad S (2016) Transcription factor Batf3 is important for development of CD8+ T-cell response against a phagosomal bacterium regardless of the location of antigen. Immunol Cell Biol 94(4):378–387

    Article  CAS  PubMed  Google Scholar 

  • Patente TA, Pinho MP, Oliveira AA, Evangelista GCM, Bergami-Santos PC, Barbuto JAM (2018) Human dendritic cells: their heterogeneity and clinical application potential in cancer immunotherapy. Front Immunol 9:3176

    Article  CAS  PubMed  Google Scholar 

  • Potiron L, Lacroix-Lamandé S, Marquis M, Levern Y, Fort G, Franceschini I et al (2019) Batf3-dependent intestinal dendritic cells play a critical role in the control of Cryptosporidium parvum infection. J Infect Dis 219(6):925–935

    Article  CAS  PubMed  Google Scholar 

  • Poulin LF, Reyal Y, Uronen-Hansson H, Schraml BU, Sancho D, Murphy KM et al (2012) DNGR-1 is a specific and universal marker of mouse and human Batf3-dependent dendritic cells in lymphoid and nonlymphoid tissues. Blood, the Journal of the American Society of Hematology 119(25):6052–6062

    CAS  Google Scholar 

  • Qiu Z, Khairallah C, Romanov G, Sheridan BS (2020) Cutting edge: Batf3 expression by CD8 T cells critically regulates the development of memory populations. J Immunol 205(4):901–906

    Article  CAS  PubMed  Google Scholar 

  • Ramos MI, Garcia S, Helder B, Aarrass S, Reedquist KA, Jacobsen SE et al (2020) cDC1 are required for the initiation of collagen-induced arthritis. Journal of Translational Autoimmunity 3:100066

    Article  PubMed  PubMed Central  Google Scholar 

  • Reizis B (2019) Plasmacytoid dendritic cells: development, regulation, and function. Immunity 50(1):37–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reséndiz M, Valenzuela O, Hernández J (2018) Response of the cDC1 and cDC2 subtypes of tracheal dendritic cells to porcine reproductive and respiratory syndrome virus. Vet Microbiol 223:27–33

    Article  PubMed  Google Scholar 

  • Russler-Germain EV, Jung J, Miller AT, Young S, Yi J, Wehmeier A et al (2021) Commensal Cryptosporidium colonization elicits a cDC1-dependent Th1 response that promotes intestinal homeostasis and limits other infections. Immun 54(11):2547–2564.e7

    Article  CAS  Google Scholar 

  • Salmon H, Idoyaga J, Rahman A, Leboeuf M, Remark R, Jordan S et al (2016) Expansion and activation of CD103+ dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. Immunity 44(4):924–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez-Paulete AR, Cueto FJ, Martínez-López M, Labiano S, Morales-Kastresana A, Rodríguez-Ruiz ME et al (2016) Cancer immunotherapy with immunomodulatory anti-CD137 and anti–PD-1 monoclonal antibodies requires BATF3-dependent dendritic cellscross-priming and immunomodulatory mAbs. Cancer Discov 6(1):71–79

    Article  PubMed  Google Scholar 

  • Sánchez-Sánchez N, Riol-Blanco L, Rodríguez-Fernández JL (2006) The multiple personalities of the chemokine receptor CCR7 in dendritic cells. J Immunol 176(9):5153–5159

    Article  PubMed  Google Scholar 

  • Schleussner N, Merkel O, Costanza M, Liang H-C, Hummel F, Romagnani C et al (2018) The AP-1-BATF and-BATF3 module is essential for growth, survival and TH17/ILC3 skewing of anaplastic large cell lymphoma. Leukemia 32(9):1994–2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlitzer A, McGovern N, Teo P, Zelante T, Atarashi K, Low D et al (2013) IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses. Immunity 38(5):970–983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlitzer A, Sivakamasundari V, Chen J, Sumatoh HRB, Schreuder J, Lum J et al (2015) Identification of cDC1-and cDC2-committed DC progenitors reveals early lineage priming at the common DC progenitor stage in the bone marrow. Nat Immunol 16(7):718–728

    Article  CAS  PubMed  Google Scholar 

  • Seillet C, Jackson JT, Markey KA, Brady HJ, Hill GR, MacDonald KP et al (2013) CD8α+ DCs can be induced in the absence of transcription factors Id2, Nfil3, and Batf3. Blood, the Journal of the American Society of Hematology 121(9):1574–1583

    CAS  Google Scholar 

  • Shekhar S, Peng Y, Wang S, Yang X (2018) CD103+ lung dendritic cells (LDCs) induce stronger Th1/Th17 immunity to a bacterial lung infection than CD11bhi LDCs. Cell Mol Immunol 15(4):377–387

    Article  CAS  PubMed  Google Scholar 

  • Soto M, Ramírez L, Solana JC, Cook EC, Hernández-García E, Charro-Zanca S et al (2020) Resistance to experimental visceral leishmaniasis in mice infected with Leishmania infantum requires Batf3. Front Immunol 11:590934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spranger S, Dai D, Horton B, Gajewski TF (2017) Tumor-residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy. Cancer Cell 31(5):711–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun T, Rojas OL, Li C, Ward LA, Philpott DJ, Gommerman JL (2017) Intestinal Batf3-dependent dendritic cells are required for optimal antiviral T-cell responses in adult and neonatal mice. Mucosal Immunol 10(3):775–788

    Article  CAS  PubMed  Google Scholar 

  • Taefehshokr N, Baradaran B, Baghbanzadeh A, Taefehshokr S (2020) Promising approaches in cancer immunotherapy. Immunobiology 225(2):151875

    Article  CAS  PubMed  Google Scholar 

  • Theisen DJ, Ferris ST, Briseño CG, Kretzer N, Iwata A, Murphy KM et al (2019) Batf3-dependent genes control tumor rejection induced by dendritic cells independently of cross-presentationBatf3-dependent genes in DC1 control tumor rejection. Cancer Immunol Res 7(1):29–39

    Article  CAS  PubMed  Google Scholar 

  • Tian J, Wang W, Zhu J, Zhuang Y, Qi C, Cai Z et al (2022) Histone methyltransferase SETDB1 promotes immune evasion in colorectal cancer via FOSB-mediated downregulation of microRNA-22 through BATF3/PD-L1 pathway. J Immunol Res 2022:4012920

    Article  PubMed  PubMed Central  Google Scholar 

  • Torti N, Walton SM, Murphy KM, Oxenius A (2011) Batf3 transcription factor-dependent DC subsets in murine CMV infection: differential impact on T-cell priming and memory inflation. Eur J Immunol 41(9):2612–2618

    Article  CAS  PubMed  Google Scholar 

  • Trinchieri G (2003) Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 3(2):133–146

    Article  CAS  PubMed  Google Scholar 

  • Tsuda M, Hamade H, Thomas LS, Salumbides BC, Potdar AA, Wong MH et al (2019) A role for BATF3 in TH9 differentiation and T-cell-driven mucosal pathologies. Mucosal Immunol 12(3):644–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tussiwand R, Lee W-L, Murphy TL, Mashayekhi M, Kc W, Albring JC et al (2012) Compensatory dendritic cell development mediated by BATF–IRF interactions. Nature 490(7421):502–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tussiwand R, Behnke MS, Kretzer NM, Grajales-Reyes GE, Murphy TL, Schreiber RD et al (2020) An important role for CD4+ T cells in adaptive immunity to Toxoplasma gondii in mice lacking the transcription factor Batf3. Msphere 5(4):e00634-e720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinson C, Myakishev M, Acharya A, Mir AA, Moll JR, Bonovich M (2002) Classification of human B-ZIP proteins based on dimerization properties. Mol Cell Biol 22(18):6321–6335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vremec D, Zorbas M, Scollay R, Saunders D, Ardavin C, Wu L et al (1992) The surface phenotype of dendritic cells purified from mouse thymus and spleen: investigation of the CD8 expression by a subpopulation of dendritic cells. J Exp Med 176(1):47–58

    Article  CAS  PubMed  Google Scholar 

  • Vrzalikova K, Ibrahim M, Vockerodt M, Perry T, Margielewska S, Lupino L et al (2018) S1PR1 drives a feedforward signalling loop to regulate BATF3 and the transcriptional programme of Hodgkin lymphoma cells. Leukemia 32(1):214–223

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Liu M, Wu Y, Yoon S, Alnabulsi A, Liu F et al (2018) Immune-modulation of two BATF3 paralogues in rainbow trout Oncorhynchus mykiss. Mol Immunol 99:104–114

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Xiang Y, Xin VW, Wang X-W, Peng X-C, Liu X-Q et al (2020) Dendritic cell biology and its role in tumor immunotherapy. J Hematol Oncol 13(1):1–18

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Xiao X, Kong G, Wen M, Wang G, Ghobrial RM et al (2022) Genetically targeting the BATF family transcription factors BATF and BATF3 in the mouse abrogates effector T cell activities and enables long-term heart allograft survival. Am J Transplant 22(2):414–426

    Article  PubMed  Google Scholar 

  • Weber M, Rudolph B, Stein P, Yogev N, Bosmann M, Schild H et al (2014) Host-derived CD8+ dendritic cells protect against acute graft-versus-host disease after experimental allogeneic bone marrow transplantation. Biol Blood Marrow Transplant 20(11):1696–1704

    Article  CAS  PubMed  Google Scholar 

  • Weiser C, Petkova MV, Rengstl B, Döring C, von Laer D, Hartmann S et al (2018) Ectopic expression of transcription factor BATF3 induces B-cell lymphomas in a murine B-cell transplantation model. Oncotarget 9(22):15942

    Article  PubMed  PubMed Central  Google Scholar 

  • Wohn C, Le Guen V, Voluzan O, Fiore F, Henri S, Malissen B (2020) Absence of MHC class II on cDC1 dendritic cells triggers fatal autoimmunity to a cross-presented self-antigen. Sci Immunol 5(45):eaba1896

    Article  CAS  PubMed  Google Scholar 

  • Yang M, Li G, Fan L, Zhang G, Xu J, Zhang J (2019) Circular RNA circ_0034642 elevates BATF3 expression and promotes cell proliferation and invasion through miR-1205 in glioma. Biochem Biophys Res Commun 508(3):980–985

    Article  CAS  PubMed  Google Scholar 

  • Yi C, Li H, Li D, Qin X, Wang J, Liu Y et al (2019) Upregulation of circular RNA circ_0034642 indicates unfavorable prognosis in glioma and facilitates cell proliferation and invasion via the miR-1205/BATF3 axis. J Cell Biochem 120(8):13737–13744

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Xiao X, Lan P, Li J, Dou Y, Chen W et al (2018) OX40 costimulation inhibits Foxp3 expression and Treg induction via BATF3-dependent and independent mechanisms. Cell Rep 24(3):607–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Yang W, Wang P, Deng Y, Dong Y-T, Liu F-F et al (2020) CCL7 recruits cDC1 to promote antitumor immunity and facilitate checkpoint immunotherapy to non-small cell lung cancer. Nat Commun 11(1):1–17

    Article  Google Scholar 

  • Zhang H, Zhao X, Wang M, Ji W (2021) Long noncoding RNA LINC01638 contributes to laryngeal squamous cell cancer progression by modulating miR-523-5p/BATF3 axis. Aging (albany NY) 13(6):8611

    Article  CAS  PubMed  Google Scholar 

  • Zhu D, Huang R, Fu P, Chen L, Luo L, Chu P et al (2019) Investigating the role of BATF3 in grass carp (Ctenopharyngodon idella) immune modulation: a fundamental functional analysis. Int J Mol Sci 20(7):1687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to appreciate the cooperation of the Clinical Research Development Unit of Imam Reza General Hospital, Tabriz, Iran, in conducting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behzad Baradaran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dabbaghipour, R., Ahmadi, E., Entezam, M. et al. Concise review: The heterogenous roles of BATF3 in cancer oncogenesis and dendritic cells and T cells differentiation and function considering the importance of BATF3-dependent dendritic cells. Immunogenetics 76, 75–91 (2024). https://doi.org/10.1007/s00251-024-01335-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-024-01335-x

Keywords

Navigation