Skip to main content

Advertisement

Log in

Sensing microbial infections in the Drosophila melanogaster genetic model organism

  • Review
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Insects occupy a central position in the biosphere. They are able to resist infections even though they lack an adaptive immune system. Drosophila melanogaster has been used as a potent genetic model to understand innate immunity both in invertebrates and vertebrates. Its immune system includes both humoral and cellular arms. Here, we review how the distinct immune responses are triggered upon sensing infections, with an emphasis on the mechanisms that lead to systemic humoral immune responses. As in plants, the components of the cell wall of microorganisms are detected by dedicated receptors. There is also an induction of the systemic immune response upon sensing the proteolytic activities of microbial virulence factors. The antiviral response mostly relies on sensing double-stranded RNAs generated during the viral infection cycle. This event subsequently triggers either the viral short interfering RNA pathway or a cGAS-like/STING/NF-κB signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ablasser A, Chen ZJ (2019) cGAS in action: expanding roles in immunity and inflammation. Science 363:eaat8657

  • Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF et al (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195

    Article  PubMed  Google Scholar 

  • Agaisse H, Burrack LS, Philips JA, Rubin EJ, Perrimon N, Higgins DE (2005) Genome-wide RNAi screen for host factors required for intracellular bacterial infection. Science 309:1248–1251

    Article  CAS  PubMed  Google Scholar 

  • Agaisse H, Petersen UM, Boutros M, Mathey-Prevot B, Perrimon N (2003) Signaling role of hemocytes in Drosophila JAK/STAT-dependent response to septic injury. Dev Cell 5:441–450

    Article  CAS  PubMed  Google Scholar 

  • Aggarwal K, Rus F, Vriesema-Magnuson C, Erturk-Hasdemir D, Paquette N, Silverman N (2008) Rudra interrupts receptor signaling complexes to negatively regulate the IMD pathway. PLoS Pathog 4:e1000120

  • Aimanianda V, Bayry J, Bozza S, Kniemeyer O, Perruccio K, Elluru SR, Clavaud C, Paris S, Brakhage AA, Kaveri SV et al (2009) Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature 460:1117–1121

    Article  CAS  PubMed  Google Scholar 

  • Armitage SA, Sun W, You X, Kurtz J, Schmucker D, Chen W (2014) Quantitative profiling of Drosophila melanogaster Dscam1 isoforms reveals no changes in splicing after bacterial exposure. PLoS One 9:e108660

  • Atilano ML, Pereira PM, Vaz F, Catalao MJ, Reed P, Grilo IR, Sobral RG, Ligoxygakis P, Pinho MG, Filipe SR (2014) Bacterial autolysins trim cell surface peptidoglycan to prevent detection by the Drosophila innate immune system. eLife 3:e02277

  • Atilano ML, Yates J, Glittenberg M, Filipe SR, Ligoxygakis P (2011) Wall teichoic acids of Staphylococcus aureus limit recognition by the drosophila peptidoglycan recognition protein-SA to promote pathogenicity. PLoS Pathog 7:e1002421

  • Attieh Z, Kallassy Awad M, Rejasse A, Courtin P, Gomperts Boneca I, Chapot-Chartier MP, Sanchis Borja V, El Chamy L (2019. D-alanylation of teichoic acids in Bacilli impedes the immune sensing of peptidoglycan in Drosophila. bioRxiv:631523

  • Attieh Z, Mouawad C, Rejasse A, Jehanno I, Perchat S, Hegna IK, Okstad OA, Kallassy Awad M, Sanchis-Borja V, El Chamy L (2020) The fliK gene is required for the resistance of Bacillus thuringiensis to antimicrobial peptides and virulence in Drosophila melanogaster. Frontiers in microbiology 11:611220

  • Barajas-Azpeleta R, Wu J, Gill J, Welte R, Seidel C, McKinney S, Dissel S, S, K (2018) Antimicrobial peptides modulate long-term memory. PLoS Genet 14:e1007440

  • Basbous N, Coste F, Leone P, Vincentelli R, Royet J, Kellenberger C, Roussel A (2011) The Drosophila peptidoglycan-recognition protein LF interacts with peptidoglycan-recognition protein LC to downregulate the Imd pathway. EMBO Rep 12:327–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basset A, Khush RS, Braun A, Gardan L, Boccard F, Hoffmann JA, Lemaitre B (2000) The phytopathogenic bacteria Erwinia carotovora infects Drosophila and activates an immune response. Proc Natl Acad Sci U S A 97:3376–3381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batz T, Forster D, Luschnig S (2014) The transmembrane protein Macroglobulin complement-related is essential for septate junction formation and epithelial barrier function in Drosophila. Development 141:899–908

    Article  CAS  PubMed  Google Scholar 

  • Bellen HJ, Tong C, Tsuda H (2010) 100 years of Drosophila research and its impact on vertebrate neuroscience: a history lesson for the future. Nat Rev Neurosci 11:514–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benmimoun B, Papastefanaki F, Perichon B, Segklia K, Roby N, Miriagou V, Schmitt C, Dramsi S, Matsas R, Speder P (2020) An original infection model identifies host lipoprotein import as a route for blood-brain barrier crossing. Nat Commun 11:6106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergeret E, Perrin J, Williams M, Grunwald D, Engel E, Thevenon D, Taillebourg E, Bruckert F, Cosson P, Fauvarque MO (2008) TM9SF4 is required for Drosophila cellular immunity via cell adhesion and phagocytosis. J Cell Sci 121:3325–3334

    Article  CAS  PubMed  Google Scholar 

  • Bergner A, Muta T, Iwanaga S, Beisel HG, Delotto R, Bode W (1997) Horseshoe crab coagulogen is an invertebrate protein with a nerve growth factor-like domain. Biol Chem 378:283–287

    Article  CAS  PubMed  Google Scholar 

  • Bettencourt R, Asha H, Dearolf C, Ip YT (2004) Hemolymph-dependent and -independent responses in Drosophila immune tissue. J Cell Biochem 92:849–863

    Article  CAS  PubMed  Google Scholar 

  • Bidla G, Dushay MS, Theopold U (2007) Crystal cell rupture after injury in Drosophila requires the JNK pathway, small GTPases and the TNF homolog Eiger. J Cell Sci 120:1209–1215

    Article  CAS  PubMed  Google Scholar 

  • Binggeli O, Neyen C, Poidevin M, Lemaitre B (2014. Prophenoloxidase activation is required for survival to microbial infections in Drosophila. PLoS Pathog 10:e1004067

  • Bischoff V, Vignal C, Boneca IG, Michel T, Hoffmann JA, Royet J (2004) Function of the drosophila pattern-recognition receptor PGRP-SD in the detection of Gram-positive bacteria. Nat Immunol 5:1175–1180

    Article  CAS  PubMed  Google Scholar 

  • Bischoff V, Vignal C, Duvic B, Boneca IG, Hoffmann JA, Royet J (2006) Downregulation of the Drosophila immune response by peptidoglycan-recognition proteins SC1 and SC2. PLoS Pathog 2:e14

  • Blum ID, Keles MF, Baz ES, Han E, Park K, Luu S, Issa H, Brown M, Ho MCW, Tabuchi M, et al (2021) Astroglial calcium signaling encodes sleep need in Drosophila. Curr Biol 31:150–162 e157

  • Bosco-Drayon V, Poidevin M, Boneca IG, Narbonne-Reveau K, Royet J, Charroux B (2012) Peptidoglycan sensing by the receptor PGRP-LE in the Drosophila gut induces immune responses to infectious bacteria and tolerance to microbiota. Cell Host Microbe 12:153–165

    Article  CAS  PubMed  Google Scholar 

  • Bou Aoun R, Hetru C, Troxler L, Doucet D, Ferrandon D, Matt N (2011) Analysis of thioester-containing proteins during the innate immune response of Drosophila melanogaster. J Innate Immun 3:52–64

    Article  CAS  PubMed  Google Scholar 

  • Boulet M, Renaud Y, Lapraz F, Benmimoun B, Vandel L, Waltzer L (2021) Characterization of the Drosophila adult hematopoietic system reveals a rare cell population with differentiation and proliferation potential. Front Cell Dev Biol 9:739357

  • Boyer L, Magoc L, Dejardin S, Cappillino M, Paquette N, Hinault C, Charriere GM, Ip WK, Fracchia S, Hennessy E et al (2011) Pathogen-derived effectors trigger protective immunity via activation of the Rac2 enzyme and the IMD or Rip kinase signaling pathway. Immunity 35:536–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyer L, Paquette N, Silverman N, Stuart LM (2012) Bacterial effectors: learning on the fly. Adv Exp Med Biol 710:29–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braun A, Hoffmann JA, Meister M (1998) Analysis of the Drosophila host defense in domino mutant larvae, which are devoid of hemocytes. Proc Natl Acad Sci U S A 95:14337–14342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brennan CA, Delaney JR, Schneider DS, Anderson KV (2007) Psidin is required in Drosophila blood cells for both phagocytic degradation and immune activation of the fat body. Curr Biol 17:67–72

    Article  CAS  PubMed  Google Scholar 

  • Bretscher AJ, Honti V, Binggeli O, Burri O, Poidevin M, Kurucz E, Zsamboki J, Ando I, Lemaitre B (2015) The Nimrod transmembrane receptor Eater is required for hemocyte attachment to the sessile compartment in Drosophila melanogaster. Biology Open 4:355–363

    Article  PubMed  PubMed Central  Google Scholar 

  • Broderick NA, Lemaitre B (2012) Gut-associated microbes of Drosophila melanogaster. Gut Microbes 3:307–321

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown MS, Goldstein JL (1983) Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis. Annu Rev Biochem 52:223–261

    Article  CAS  PubMed  Google Scholar 

  • Brun S, Vidal S, Spellman P, Takahashi K, Tricoire H, Lemaitre B (2006) The MAPKKK Mekk1 regulates the expression of Turandot stress genes in response to septic injury in Drosophila. Genes Cells 11:397–407

    Article  CAS  PubMed  Google Scholar 

  • Buchon N, Poidevin M, Kwon HM, Guillou A, Sottas V, Lee BL, Lemaitre B (2009) A single modular serine protease integrates signals from pattern-recognition receptors upstream of the Drosophila Toll pathway. Proc Natl Acad Sci U S A 106:12442–12447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchon N, Silverman N, Cherry S (2014) Immunity in Drosophila melanogaster–from microbial recognition to whole-organism physiology. Nat Rev Immunol 14:796–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bulet P, Stocklin R (2005) Insect antimicrobial peptides: structures, properties and gene regulation. Protein Pept Lett 12:3–11

    Article  CAS  PubMed  Google Scholar 

  • Cai H, Holleufer A, Simonsen B, Schneider J, Lemoine A, Gad HH, Huang J, Huang J, Chen D, Peng T et al (2020) 2'3'-cGAMP triggers a STING- and NF-kappaB-dependent broad antiviral response in Drosophila. Sci Signal 13

  • Cai XT, Li H, Borch Jensen M, Maksoud E, Borneo J, Liang Y, Quake SR, Luo L, Haghighi P, Jasper H (2021) Gut cytokines modulate olfaction through metabolic reprogramming of glia. Nature 596:97–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao Y, Chtarbanova S, Petersen AJ, Ganetzky B (2013) Dnr1 mutations cause neurodegeneration in Drosophila by activating the innate immune response in the brain. Proc Natl Acad Sci U S A 110:E1752-1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capilla A, Karachentsev D, Patterson RA, Hermann A, Juarez MT, McGinnis W (2017) Toll pathway is required for wound-induced expression of barrier repair genes in the Drosophila epidermis. Proc Natl Acad Sci U S A 114:E2682–E2688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capo F, Chaduli D, Viallat-Lieutaud A, Charroux B, Royet J (2017) Oligopeptide transporters of the SLC15 family are dispensable for peptidoglycan sensing and transport in Drosophila. J Innate Immun 9:483–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakrabarti S, Dudzic JP, Li X, Collas EJ, Boquete JP, Lemaitre B (2016) Remote control of intestinal stem cell activity by haemocytes in Drosophila. PLoS Genet 12:e1006089

  • Chakrabarti S, Visweswariah SS (2020) Intramacrophage ROS primes the innate immune system via JAK/STAT and toll activation. Cell reports 33:108368

  • Chang CI, Chelliah Y, Borek D, Mengin-Lecreulx D, Deisenhofer J (2006) Structure of tracheal cytotoxin in complex with a heterodimeric pattern-recognition receptor. Science 311:1761–1764

    Article  CAS  PubMed  Google Scholar 

  • Chang CI, Ihara K, Chelliah Y, Mengin-Lecreulx D, Wakatsuki S, Deisenhofer J (2005) Structure of the ectodomain of Drosophila peptidoglycan-recognition protein LCa suggests a molecular mechanism for pattern recognition. Proc Natl Acad Sci U S A 102:10279–10284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang CI, Pili-Floury SS, Herve M, Parquet C, Chelliah Y, Lemaitre B, Mengin-Lecreulx D, Deisenhofer J (2004) A Drosophila pattern recognition receptor contains a peptidoglycan docking groove and unusual l, d-carboxypeptidase activity. PLoS Biol 2:E277

    Article  PubMed  PubMed Central  Google Scholar 

  • Charriere GM, Ip WE, Dejardin S, Boyer L, Sokolovska A, Cappillino MP, Cherayil BJ, Podolsky DK, Kobayashi KS, Silverman N et al (2010) Identification of Drosophila Yin and PEPT2 as evolutionarily conserved phagosome-associated muramyl dipeptide transporters. J Biol Chem 285:20147–20154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charroux B, Capo F, Kurz CL, Peslier S, Chaduli D, Viallat-Lieutaud A, Royet J (2018) Cytosolic and secreted peptidoglycan-degrading enzymes in Drosophila respectively control local and systemic immune responses to microbiota. Cell Host Microbe 23:215–228 e214

  • Charroux B, Royet J (2009) Elimination of plasmatocytes by targeted apoptosis reveals their role in multiple aspects of the Drosophila immune response. Proc Natl Acad Sci U S A 106:9797–9802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choe KM, Lee H, Anderson KV (2005) Drosophila peptidoglycan recognition protein LC (PGRP-LC) acts as a signal-transducing innate immune receptor. Proc Natl Acad Sci U S A 102:1122–1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choe KM, Werner T, Stoven S, Hultmark D, Anderson KV (2002) Requirement for a peptidoglycan recognition protein (PGRP) in relish activation and antibacterial immune responses in Drosophila. Science 296:359–362

    Article  CAS  PubMed  Google Scholar 

  • Chung YS, Kocks C (2011) Recognition of pathogenic microbes by the Drosophila phagocytic pattern recognition receptor eater. J Biol Chem 286:26524–26532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark RI, Woodcock KJ, Geissmann F, Trouillet C, Dionne MS (2011) Multiple TGF-beta superfamily signals modulate the adult Drosophila immune response. Curr Biol 21:1672–1677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clemmons AW, Lindsay SA, Wasserman SA (2015) An effector peptide family required for Drosophila toll-mediated immunity. PLoS Pathog 11:e1004876

  • Costechareyre D, Capo F, Fabre A, Chaduli D, Kellenberger C, Roussel A, Charroux B, Royet J (2016) Tissue-specific regulation of Drosophila NF-kappaB pathway activation by peptidoglycan recognition protein SC. J Innate Immun 8:67–80

    Article  CAS  PubMed  Google Scholar 

  • Cuttell L, Vaughan A, Silva E, Escaron CJ, Lavine M, Van Goethem E, Eid JP, Quirin M, Franc NC (2008) Undertaker, a Drosophila junctophilin, links Draper-mediated phagocytosis and calcium homeostasis. Cell 135:524–534

    Article  CAS  PubMed  Google Scholar 

  • Davis MM, Engstrom Y (2012) Immune response in the barrier epithelia: lessons from the fruit fly Drosophila melanogaster. J Innate Immun 4:273–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Gregorio E, Han SJ, Lee WJ, Baek MJ, Osaki T, Kawabata S, Lee BL, Iwanaga S, Lemaitre B, Brey PT (2002a) An immune-responsive Serpin regulates the melanization cascade in Drosophila. Dev Cell 3:581–592

    Article  PubMed  Google Scholar 

  • De Gregorio E, Spellman PT, Tzou P, Rubin GM, Lemaitre B (2002b) The Toll and Imd pathways are the major regulators of the immune response in Drosophila. Embo J 21:2568–2579

    Article  PubMed  PubMed Central  Google Scholar 

  • Deddouche S, Matt N, Budd A, Mueller S, Kemp C, Galiana-Arnoux D, Dostert C, Antoniewski C, Hoffmann JA, Imler JL (2008) The DExD/H-box helicase Dicer-2 mediates the induction of antiviral activity in drosophila. Nat Immunol 9:1425–1432

    Article  CAS  PubMed  Google Scholar 

  • Defaye A, Evans I, Crozatier M, Wood W, Lemaitre B, Leulier F (2009) Genetic ablation of Drosophila phagocytes reveals their contribution to both development and resistance to bacterial infections. J Innate Immun 1:322–334

    Article  CAS  PubMed  Google Scholar 

  • Dostalova A, Rommelaere S, Poidevin M, Lemaitre B (2017) Thioester-containing proteins regulate the Toll pathway and play a role in Drosophila defence against microbial pathogens and parasitoid wasps. BMC Biol 15:79

    Article  PubMed  PubMed Central  Google Scholar 

  • Dostert C, Jouanguy E, Irving P, Troxler L, Galiana-Arnoux D, Hetru C, Hoffmann JA, Imler JL (2005) The Jak-STAT signaling pathway is required but not sufficient for the antiviral response of drosophila. Nat Immunol 6:946–953

    Article  CAS  PubMed  Google Scholar 

  • Dudzic JP, Hanson MA, Iatsenko I, Kondo S, Lemaitre B (2019) More than black or white: melanization and toll share regulatory serine proteases in Drosophila. Cell reports 27:1050–1061 e1053

  • Dudzic JP, Kondo S, Ueda R, Bergman CM, Lemaitre B (2015) Drosophila innate immunity: regional and functional specialization of prophenoloxidases. BMC Biol 13:81

    Article  PubMed  PubMed Central  Google Scholar 

  • Eaglesham JB, Pan Y, Kupper TS, Kranzusch PJ (2019) Viral and metazoan poxins are cGAMP-specific nucleases that restrict cGAS-STING signalling. Nature 566:259–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ekengren S, Tryselius Y, Dushay MS, Liu G, Steiner H, Hultmark D (2001) A humoral stress response in Drosophila. Curr Biol 11:714–718

    Article  CAS  PubMed  Google Scholar 

  • El Chamy L, Leclerc V, Caldelari I, Reichhart JM (2008) Sensing of ‘danger signals’ and pathogen-associated molecular patterns defines binary signaling pathways ‘upstream’ of Toll. Nat Immunol 9:1165–1170

    Article  PubMed  PubMed Central  Google Scholar 

  • Elrod-Erickson M, Mishra S, Schneider D (2000) Interactions between the cellular and humoral immune responses in Drosophila. Curr Biol 10:781–784

    Article  CAS  PubMed  Google Scholar 

  • Engström Y, Kadalayil L, Sun S-C, Samakovlis C, Hultmark D, Faye I (1993) KappaB-like motifs regulate the induction of immune genes in Drosophila. J Mol Biol 232:327–333

    Article  PubMed  Google Scholar 

  • Estevez-Lao TY, Hillyer JF (2014) Involvement of the Anopheles gambiae Nimrod gene family in mosquito immune responses. Insect Biochem Mol Biol 44:12–22

    Article  CAS  PubMed  Google Scholar 

  • Evans IR, Rodrigues FS, Armitage EL, Wood W (2015) Draper/CED-1 mediates an ancient damage response to control inflammatory blood cell migration in vivo. Curr Biol 25:1606–1612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fast D, Duggal A, Foley E (2018) Monoassociation with Lactobacillus plantarum disrupts intestinal homeostasis in adult Drosophila melanogaster. mBio 9:e01114–01118

  • Ferguson M, Foley E (2021) Microbial recognition regulates intestinal epithelial growth in homeostasis and disease. Febs J

  • Ferrandon D (2013) The complementary facets of epithelial host defenses in the genetic model organism Drosophila melanogaster: from resistance to resilience. Curr Opin Immunol 25:59–70

    Article  CAS  PubMed  Google Scholar 

  • Ferrandon D, Imler JL, Hetru C, Hoffmann JA (2007) The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections. Nat Rev Immunol 7:862–874

    Article  CAS  PubMed  Google Scholar 

  • Ferrandon D, Jung AC, Criqui MC, Lemaitre B, Uttenweiler-Joseph S, Michaut L, Reichhart JM, Hoffmann JA (1998) A drosomycin-GFP reporter transgene reveals a local immune response in Drosophila that is not dependent on the Toll pathway. EMBO J 17:1217–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira AG, Naylor H, Esteves SS, Pais IS, Martins NE, Teixeira L (2014) The Toll-dorsal pathway is required for resistance to viral oral infection in Drosophila. PLoS Pathog 10:e1004507

  • Filipe SR, Tomasz A, Ligoxygakis P (2005) Requirements of peptidoglycan structure that allow detection by the Drosophila Toll pathway. EMBO Rep 6:327–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foley E, O’Farrell PH (2003) Nitric oxide contributes to induction of innate immune responses to gram-negative bacteria in Drosophila. Genes Dev 17:115–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franc NC, Dimarcq J-L, Lagueux M, Hoffmann J, Ezekowitz AB (1996) Croquemort, a novel Drosophila hemocyte/macrophage receptor that recognizes apoptotic cells. Immunity 4:431–443

    Article  CAS  PubMed  Google Scholar 

  • Franc NC, Heitzler P, Ezekowitz RA, White K (1999) Requirement for croquemort in phagocytosis of apoptotic cells in Drosophila. Science 284:1991–1994

    Article  CAS  PubMed  Google Scholar 

  • Freeman MR, Delrow J, Kim J, Johnson E, Doe CQ (2003) Unwrapping glial biology: Gcm target genes regulating glial development, diversification, and function. Neuron 38:567–580

    Article  CAS  PubMed  Google Scholar 

  • Gaidt MM, Morrow A, Fairgrieve MR, Karr JP, Yosef N, Vance RE (2021). Self-guarding of MORC3 enables virulence factor-triggered immunity. Nature in press

  • Ganesan S, Aggarwal K, Paquette N, Silverman N (2011) NF-kappaB/Rel proteins and the humoral immune responses of Drosophila melanogaster. Curr Top Microbiol Immunol 349:25–60

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garver LS, Wu J, Wu LP (2006) The peptidoglycan recognition protein PGRP-SC1a is essential for Toll signaling and phagocytosis of Staphylococcus aureus in Drosophila. Proc Natl Acad Sci U S A 103:660–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gay NJ, Keith FJ (1991) Drosophila Toll and IL-1 receptor. Nature 351:355–356

    Article  CAS  PubMed  Google Scholar 

  • Gendrin M, Welchman DP, Poidevin M, Herve M, Lemaitre B (2009) Long-range activation of systemic immunity through peptidoglycan diffusion in Drosophila. PLoS Pathog 5:e1000694

  • Gendrin M, Zaidman-Remy A, Broderick NA, Paredes J, Poidevi M, Roussel A, Lemaitre B (2013) Functional analysis of PGRP-LA in Drosophila immunity. PLoS One 8:e69742

  • Glaser RW (1918) On the existence of immunity principles in insects. Psyche 25:39–46

    Article  Google Scholar 

  • Gobert V, Gottar M, Matskevich A, Rutschmann S, Royet J, Belvin M, Hoffmann JA, Ferrandon D (2003) Dual activation of the Drosophila Toll pathway by two pattern recognition receptors. Science 302:2126–2130

    Article  CAS  PubMed  Google Scholar 

  • Goic B, Vodovar N, Mondotte JA, Monot C, Frangeul L, Blanc H, Gausson V, Vera-Otarola J, Cristofari G, Saleh MC (2013) RNA-mediated interference and reverse transcription control the persistence of RNA viruses in the insect model Drosophila. Nat Immunol 14:396–403

    Article  CAS  PubMed  Google Scholar 

  • Gordon O, Henry CM, Srinivasan N, Ahrens S, Franz A, Deddouche S, Chakravarty P, Phillips D, George R, Kjaer S et al (2018) Alpha-actinin accounts for the bioactivity of actin preparations in inducing STAT target genes in Drosophila melanogaster. eLife 7:e19662

  • Goto A, Okado K, Martins N, Cai H, Barbier V, Lamiable O, Troxler L, Santiago E, Kuhn L, Paik D et al (2020) The kinase IKKbeta regulates a STING-and NF-kappaB- dependent antiviral response pathway in Drosophila. Immunity 52:200

    Article  CAS  PubMed  Google Scholar 

  • Gottar M, Gobert V, Matskevich AA, Reichhart JM, Wang C, Butt TM, Belvin M, Hoffmann JA, Ferrandon D (2006) Dual detection of fungal infections in Drosophila via recognition of glucans and sensing of virulence factors. Cell 127:1425–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gottar M, Gobert V, Michel T, Belvin M, Duyk G, Hoffmann JA, Ferrandon D, Royet J (2002) The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein. Nature 416:640–644

    Article  CAS  PubMed  Google Scholar 

  • Grootjans S, Vanden Berghe T, Vandenabeele P (2017) Initiation and execution mechanisms of necroptosis: an overview. Cell Death Differ 24:1184–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guillou A, Troha K, Wang H, Franc NC, Buchon N (2016) The Drosophila CD36 Homologue croquemort is required to maintain immune and gut homeostasis during development and aging. PLoS Pathog 12:e1005961

  • Guo L, Karpac J, Tran SL, Jasper H (2014) PGRP-SC2 promotes gut immune homeostasis to limit commensal dysbiosis and extend lifespan. Cell 156:109–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Z, Li Y, Ding SW (2019) Small RNA-based antimicrobial immunity. Nat Rev Immunol 19:31–44

    Article  CAS  PubMed  Google Scholar 

  • Ha EM, Lee KA, Park SH, Kim SH, Nam HJ, Lee HY, Kang D, Lee WJ (2009a) Regulation of DUOX by the Galphaq-phospholipase Cbeta-Ca2+ pathway in Drosophila gut immunity. Dev Cell 16:386–397

    Article  CAS  PubMed  Google Scholar 

  • Ha EM, Lee KA, Seo YY, Kim SH, Lim JH, Oh BH, Kim J, Lee WJ (2009b) Coordination of multiple dual oxidase-regulatory pathways in responses to commensal and infectious microbes in drosophila gut. Nat Immunol 10:949–957

    Article  CAS  PubMed  Google Scholar 

  • Ha EM, Oh CT, Bae YS, Lee WJ (2005a) A direct role for dual oxidase in Drosophila gut immunity. Science 310:847–850

    Article  CAS  PubMed  Google Scholar 

  • Ha EM, Oh CT, Ryu JH, Bae YS, Kang SW, Jang IH, Brey PT, Lee WJ (2005b) An antioxidant system required for host protection against gut infection in Drosophila. Dev Cell 8:125–132

    Article  CAS  PubMed  Google Scholar 

  • Hall S, Bone C, Oshima K, Zhang L, McGraw M, Lucas B, Fehon RG, Ward, R.E.t. (2014) Macroglobulin complement-related encodes a protein required for septate junction organization and paracellular barrier function in Drosophila. Development 141:889–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haller S, Franchet A, Hakkim A, Chen J, Drenkard E, Yu S, Schirmeier S, Li Z, Martins N, Ausubel FM et al (2018) Quorum-sensing regulator RhlR but not its autoinducer RhlI enables Pseudomonas to evade opsonization. EMBO Rep 19:e44880

  • Hamon Y, Trompier D, Ma Z, Venegas V, Pophillat M, Mignotte V, Zhou Z, Chimini G (2006) Cooperation between engulfment receptors: the case of ABCA1 and MEGF10. PLoS One 1:e120

  • Han C, Song Y, Xiao H, Wang D, Franc NC, Jan LY, Jan YN (2014) Epidermal cells are the primary phagocytes in the fragmentation and clearance of degenerating dendrites in Drosophila. Neuron 81:544–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen K, Prabakaran T, Laustsen A, Jorgensen SE, Rahbaek SH, Jensen SB, Nielsen R, Leber JH, Decker T, Horan KA et al (2014) Listeria monocytogenes induces IFNbeta expression through an IFI16-, cGAS- and STING-dependent pathway. EMBO J 33:1654–1666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao Y, Yu S, Luo F, Jin LH (2018) Jumu is required for circulating hemocyte differentiation and phagocytosis in Drosophila. Cell Commun Signal 16:95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harnish JM, Link N, Yamamoto S (2021) Drosophila as a model for infectious diseases. Int J Mol Sci 22:2724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto Y, Tabuchi Y, Sakurai K, Kutsuna M, Kurokawa K, Awasaki T, Sekimizu K, Nakanishi Y, Shiratsuchi A (2009) Identification of lipoteichoic acid as a ligand for draper in the phagocytosis of Staphylococcus aureus by Drosophila hemocytes. J Immunol 183:7451–7460

    Article  CAS  PubMed  Google Scholar 

  • Holleufer A, Winther KG, Gad HH, Ai X, Chen Y, Li L, Wei Z, Deng H, Liu J, Frederiksen NA et al (2021) Two cGAS-like receptors induce antiviral immunity in Drosophila. Nature 597:114–118

    Article  CAS  PubMed  Google Scholar 

  • Hultmark D (1993) Immune-reactions in Drosophila and other insects - a model for innate immunity. Trends Genet 9:178–183

    Article  CAS  PubMed  Google Scholar 

  • Hultmark D, Steiner H, Rasmuson T, Boman HG (1980) Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia. Eur J Biochem 106:7–16

    Article  CAS  PubMed  Google Scholar 

  • Hunter MV, Willoughby PM, Bruce AEE, Fernandez-Gonzalez R (2018) Oxidative stress orchestrates cell polarity to promote embryonic wound healing. Dev Cell 47:377–387 e374

  • Iatsenko I, Boquete JP, Lemaitre B (2018) Microbiota-derived lactate activates production of reactive oxygen species by the intestinal NADPH oxidase Nox and shortens Drosophila lifespan. Immunity 49:929–942 e925

  • Iatsenko I, Kondo S, Mengin-Lecreulx D, Lemaitre B (2016) PGRP-SD, an extracellular pattern-recognition receptor, enhances peptidoglycan-mediated activation of the Drosophila Imd pathway. Immunity 45:1013–1023

    Article  CAS  PubMed  Google Scholar 

  • Irving P, Ubeda JM, Doucet D, Troxler L, Lagueux M, Zachary D, Hoffmann JA, Hetru C, Meister M (2005) New insights into Drosophila larval haemocyte functions through genome-wide analysis. Cell Microbiol 7:335–350

    Article  CAS  PubMed  Google Scholar 

  • Issa N, Guillaumot N, Lauret E, Matt, N, Schaeffer-Reiss C, Van Dorsselaer A, Reichhart JM, Veillard F (2018) The circulating protease persephone is an immune sensor for microbial proteolytic activities upstream of the Drosophila toll pathway. Mol Cell 69:539–550 e536

  • Janeway CA (1989) Approaching the asymptote: evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 54:1–13

    Article  CAS  PubMed  Google Scholar 

  • Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216

    Article  CAS  PubMed  Google Scholar 

  • Jang IH, Chosa N, Kim SH, Nam HJ, Lemaitre B, Ochiai M, Kambris Z, Brun S, Hashimoto C, Ashida M et al (2006) A Spatzle-processing enzyme required for toll signaling activation in Drosophila innate immunity. Dev Cell 10:45–55

    Article  CAS  PubMed  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Jones RM, Desai C, Darby TM, Luo L, Wolfarth AA, Scharer CD, Ardita CS, Reedy AR, Keebaugh ES, Neish AS (2015) Lactobacilli modulate epithelial cytoprotection through the Nrf2 pathway. Cell Rep 12:1217–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones RM, Luo L, Ardita CS, Richardson AN, Kwon YM, Mercante JW, Alam A, Gates CL, Wu H, Swanson PA et al (2013) Symbiotic lactobacilli stimulate gut epithelial proliferation via Nox-mediated generation of reactive oxygen species. EMBO J 32:3017–3028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones RM, Luo L, Moberg KH (2012) Aeromonas salmonicida-secreted protein AopP is a potent inducer of apoptosis in a mammalian and a Drosophila model. Cell Microbiol 14:274–285

    Article  CAS  PubMed  Google Scholar 

  • Jones RM, Wu H, Wentworth C, Luo L, Collier-Hyams L, Neish AS (2008) Salmonella AvrA coordinates suppression of host immune and apoptotic defenses via JNK pathway blockade. Cell Host Microbe 3:233–244

    Article  CAS  PubMed  Google Scholar 

  • Ju JS, Cho MH, Brade L, Kim JH, Park JW, Ha NC, Soderhall I, Soderhall K, Brade H, Lee BL (2006) A novel 40-kDa protein containing six repeats of an epidermal growth factor-like domain functions as a pattern recognition protein for lipopolysaccharide. J Immunol 177:1838–1845

    Article  CAS  PubMed  Google Scholar 

  • Jugder BE, Kamareddine L, Watnick PI (2021) Microbiota-derived acetate activates intestinal innate immunity via the Tip60 histone acetyltransferase complex. Immunity 54:1683–1697 e1683

  • Kamar R, Rejasse A, Jehanno I, Attieh Z, Courtin P, Chapot-Chartier MP, Nielsen-Leroux C, Lereclus D, El Chamy L, Kallassy M et al (2017) DltX of Bacillus thuringiensis is essential for D-Alanylation of teichoic acids and resistance to antimicrobial response in insects. Front Microbiol 8:1437

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamareddine L, Robins WP, Berkey CD, Mekalanos JJ, Watnick PI (2018) The Drosophila immune deficiency pathway modulates enteroendocrine function and host metabolism. Cell Metab 28:449–462 e445

  • Kaneko T, Goldman WE, Mellroth P, Steiner H, Fukase K, Kusumoto S, Harley W, Fox A, Golenbock D, Silverman N (2004) Monomeric and polymeric gram-negative peptidoglycan but not purified LPS stimulate the Drosophila IMD pathway. Immunity 20:637–649

    Article  CAS  PubMed  Google Scholar 

  • Kaneko T, Yano T, Aggarwal K, Lim JH, Ueda K, Oshima Y, Peach C, Erturk-Hasdemir D, Goldman WE, Oh BH et al (2006) PGRP-LC and PGRP-LE have essential yet distinct functions in the drosophila immune response to monomeric DAP-type peptidoglycan. Nat Immunol 7:715–723

    Article  CAS  PubMed  Google Scholar 

  • Kiehart DP, Crawford JM, Aristotelous A, Venakides S, Edwards GS (2017) Cell sheet morphogenesis: dorsal closure in Drosophila melanogaster as a model system. Annu Rev Cell Dev Biol 33:169–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim BY, Wang JR, Miller DE, Barmina O, Delaney E, Thompson A, Comeault AA, Peede D, D’Agostino ER, Pelaez J et al (2021) Highly contiguous assemblies of 101 drosophilid genomes. eLife 10:e66405

  • Kim MS, Byun M, Oh BH (2003) Crystal structure of peptidoglycan recognition protein LB from Drosophila melanogaster. Nat Immunol 4:787–793

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Lee WJ (2014) Role of DUOX in gut inflammation: lessons from Drosophila model of gut-microbiota interactions. Front Cell Infect Microbiol 3:116

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim YS, Ryu JH, Han SJ, Choi KH, Nam KB, Jang IH, Lemaitre B, Brey PT, Lee WJ (2000) Gram-negative bacteria-binding protein, a pattern recognition receptor for lipopolysaccharide and beta-1,3-glucan that mediates the signaling for the induction of innate immune genes in Drosophila melanogaster cells. J Biol Chem 275:32721–32727

    Article  CAS  PubMed  Google Scholar 

  • Kleino A, Ramia NF, Bozkurt G, Shen Y, Nailwal H, Huang J, Napetschnig J, Gangloff M, Chan FK, Wu H, et al (2017). Peptidoglycan-sensing receptors trigger the formation of functional amyloids of the adaptor protein imd to initiate Drosophila NF-kappaB signaling. Immunity 47:635–647 e636

  • Kocks C, Cho JH, Nehme N, Ulvila J, Pearson AM, Meister M, Strom C, Conto SL, Hetru C, Stuart LM et al (2005) Eater, a transmembrane protein mediating phagocytosis of bacterial pathogens in Drosophila. Cell 123:335–346

    Article  CAS  PubMed  Google Scholar 

  • Kurant E, Axelrod S, Leaman D, Gaul U (2008) Six-microns-under acts upstream of Draper in the glial phagocytosis of apoptotic neurons. Cell 133:498–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurucz E, Markus R, Zsamboki J, Folkl-Medzihradszky K, Darula Z, Vilmos P, Udvardy A, Krausz I, Lukacsovich T, Gateff E et al (2007) Nimrod, a putative phagocytosis receptor with EGF repeats in Drosophila plasmatocytes. Curr Biol 17:649–654

    Article  CAS  PubMed  Google Scholar 

  • Kurz CL, Charroux B, Chaduli D, Viallat-Lieutaud A, Royet J (2017) Peptidoglycan sensing by octopaminergic neurons modulates Drosophila oviposition. eLife 6:e50559

  • Lafont M, Vergnes A, Vidal-Dupiol J, de Lorgeril J, Gueguen Y, Haffner P, Petton B, Chaparro C, Barrachina C, Destoumieux-Garzon D et al (2020) A sustained immune response supports long-term antiviral immune priming in the Pacific oyster. Crassostrea Gigas Mbio 11:e02777-e12719

    CAS  PubMed  Google Scholar 

  • Lagueux M, Perrodou E, Levashina EA, Capovilla M, Hoffmann JA (2000) Constitutive expression of a complement-like protein in toll and JAK gain-of-function mutants of Drosophila. Proc Natl Acad Sci U S A 97:11427–11432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanot R, Zachary D, Holder F, Meister M (2001) Postembryonic hematopoiesis in Drosophila. Dev Biol 230:243–257

    Article  CAS  PubMed  Google Scholar 

  • Lau GW, Goumnerov BC, Walendziewicz CL, Hewitson J, Xiao W, Mahajan-Miklos S, Tompkins RG, Perkins LA, Rahme LG (2003) The Drosophila melanogaster toll pathway participates in resistance to infection by the gram-negative human pathogen Pseudomonas aeruginosa. Infect Immun 71:4059–4066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lazzaro BP (2005) Elevated polymorphism and divergence in the class C scavenger receptors of Drosophila melanogaster and D. simulans. Genetics 169:2023–2034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KA, Kim B, Bhin J, Kim DH, You H, Kim EK, Kim SH, Ryu JH, Hwang D, Lee WJ (2015) Bacterial uracil modulates Drosophila DUOX-dependent gut immunity via Hedgehog-induced signaling endosomes. Cell Host Microbe 17:191–204

    Article  CAS  PubMed  Google Scholar 

  • Lee KA, Kim SH, Kim EK, Ha EM, You H, Kim B, Kim MJ, Kwon Y, Ryu JH, Lee WJ (2013) Bacterial-derived uracil as a modulator of mucosal immunity and gut-microbe homeostasis in Drosophila. Cell 153:797–811

    Article  CAS  PubMed  Google Scholar 

  • Lee WJ, Lee JD, Kravchenko VV, Ulevitch RJ, Brey PT (1996) Purification and molecular cloning of an inducible gram-negative bacteria-binding protein from the silkworm, Bombyx mori. Proc Natl Acad Sci U S A 93:7888–7893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee WJ, Miura M (2014) Mechanisms of systemic wound response in Drosophila. Curr Top Dev Biol 108:153–183

    Article  CAS  PubMed  Google Scholar 

  • Lemaitre B, Hoffmann J (2007) The host defense of Drosophila melanogaster. Annu Rev Immunol 25:697–743

    Article  CAS  PubMed  Google Scholar 

  • Lemaitre B, Miguel-Aliaga I (2013) The digestive tract of Drosophila melanogaster. Annu Rev Genet 47:377–404

    Article  CAS  PubMed  Google Scholar 

  • Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA (1996) The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86:973–983

    Article  CAS  PubMed  Google Scholar 

  • Lemaitre B, Reichhart JM, Hoffmann JA (1997) Drosophila host defense: differential display of antimicrobial peptide genes after infection by various classes of microorganisms. Proc Natl Acad Sci USA 94:14614–14619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leone P, Bischoff V, Kellenberger C, Hetru C, Royet J, Roussel A (2008) Crystal structure of Drosophila PGRP-SD suggests binding to DAP-type but not lysine-type peptidoglycan. Mol Immunol 45:2521–2530

    Article  CAS  PubMed  Google Scholar 

  • Lesperance DN, Broderick NA (2020) Microbiomes as modulators of Drosophila melanogaster homeostasis and disease. Curr Opin Insect Sci 39:84–90

    Article  PubMed  PubMed Central  Google Scholar 

  • Leulier F, Lemaitre B (2008) Toll-like receptors–taking an evolutionary approach. Nat Rev Genet 9:165–178

    Article  CAS  PubMed  Google Scholar 

  • Leulier F, Parquet C, Pili-Floury S, Ryu JH, Caroff M, Lee WJ, Mengin-Lecreulx D, Lemaitre B (2003) The Drosophila immune system detects bacteria through specific peptidoglycan recognition. Nat Immunol 4:478–484

    Article  CAS  PubMed  Google Scholar 

  • Levashina EA, Langley E, Green C, Gubb D, Ashburner M, Hoffmann JA, Reichhart JM (1999) Constitutive activation of Toll-mediated antifungal defense in serpin-deficient Drosophila. Science 285:1917–1919

    Article  CAS  PubMed  Google Scholar 

  • Levashina EA, Moita LF, Blandin S, Vriend G, Lagueux M, Kafatos FC (2001) Conserved role of a complement-like protein in phagocytosis revealed by dsRNA knockout in cultured cells of the mosquito, Anopheles gambiae. Cell 104:709–718

    Article  CAS  PubMed  Google Scholar 

  • Levy F, Bulet P, Ehret-Sabatier L (2004) Proteomic analysis of the systemic immune response of Drosophila. Mol Cell Proteomics 3:156–166

    Article  CAS  PubMed  Google Scholar 

  • Ligoxygakis P, Pelte N, Hoffmann JA, Reichhart JM (2002) Activation of Drosophila Toll during fungal infection by a blood serine protease. Science 297:114–116

    Article  CAS  PubMed  Google Scholar 

  • Lim JH, Kim MS, Kim HE, Yano T, Oshima Y, Aggarwal K, Goldman WE, Silverman N, Kurata S, Oh BH (2006) Structural basis for preferential recognition of diaminopimelic acid-type peptidoglycan by a subset of peptidoglycan recognition proteins. J Biol Chem 281:8286–8295

    Article  CAS  PubMed  Google Scholar 

  • Limmer S, Haller S, Drenkard E, Lee J, Yu S, Kocks C, Ausubel FM, Ferrandon D (2011) Pseudomonas aeruginosa RhlR is required to neutralize the cellular immune response in a Drosophila melanogaster oral infection model. Proc Natl Acad Sci U S A 108:17378–17383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin SJH, Cohen LB, Wasserman SA (2020) Effector specificity and function in Drosophila innate immunity: getting AMPed and dropping Boms. PLoS Pathog 16:e1008480

  • Liu S, Liu H, Johnston A, Hanna-Addams S, Reynoso E, Xiang Y, Wang Z (2017) MLKL forms disulfide bond-dependent amyloid-like polymers to induce necroptosis. Proc Natl Acad Sci U S A 114:E7450-e7459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Sano T, Guan Y, Nagata S, Hoffmann JA, Fukuyama H (2012) Drosophila EYA regulates the immune response against DNA through an evolutionarily conserved threonine phosphatase motif. PLoS One 7:e42725

  • Loof TG, Morgelin M, Johansson L, Oehmcke S, Olin AI, Dickneite G, Norrby-Teglund A, Theopold U, Herwald H (2011) Coagulation, an ancestral serine protease cascade, exerts a novel function in early immune defense. Blood 118:2589–2598

    Article  CAS  PubMed  Google Scholar 

  • Maillet F, Bischoff V, Vignal C, Hoffmann J, Royet J (2008) The Drosophila peptidoglycan recognition protein PGRP-LF blocks PGRP-LC and IMD/JNK pathway activation. Cell Host Microbe 3:293–303

    Article  CAS  PubMed  Google Scholar 

  • Mangahas PM, Zhou Z (2005) Clearance of apoptotic cells in Caenorhabditis elegans. Semin Cell Dev Biol 16:295–306

    Article  CAS  PubMed  Google Scholar 

  • Marques JT, Wang JP, Wang X, de Oliveira KP, Gao C, Aguiar ER, Jafari N, Carthew RW (2013) Functional specialization of the small interfering RNA pathway in response to virus infection. PLoS Pathog 9:e1003579

  • Matos RC, Schwarzer M, Gervais H, Courtin P, Joncour P, Gillet B, Ma D, Bulteau AL, Martino ME, Hughes S et al (2017) D-Alanylation of teichoic acids contributes to Lactobacillus plantarum-mediated Drosophila growth during chronic undernutrition. Nat Microbiol 2:1635–1647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matskevich AA, Quintin J, Ferrandon D (2010) The Drosophila PRR GNBP3 assembles effector complexes involved in antifungal defenses independently of its Toll-pathway activation function. Eur J Immunol 40:1244–1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsunaga TM, Fujiwara H (2002) Identification and characterization of genes abnormally expressed in wing-deficient mutant (flugellos) of the silkworm, Bombyx mori. Insect Biochem Mol Biol 32:691–699

    Article  CAS  PubMed  Google Scholar 

  • Meehan TL, Joudi TF, Timmons AK, Taylor JD, Habib CS, Peterson JS, Emmanuel S, Franc NC, McCall K (2016).Components of the engulfment machinery have distinct roles in corpse processing. PLoS One 11:e0158217

  • Meister M, Braun A, Kappler C, Reichhart J-M, Hoffmann JA (1994) Insect immunity. A transgenic analysis in Drosophila defines several functional domains in the diptericin promoter. EMBO J 13:5958–5966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melcarne C, Lemaitre B, Kurant E (2019a) Phagocytosis in Drosophila: from molecules and cellular machinery to physiology. Insect Biochem Mol Biol 109:1–12

    Article  CAS  PubMed  Google Scholar 

  • Melcarne C, Ramond E, Dudzic J, Bretscher AJ, Kurucz E, Ando I, Lemaitre B (2019b) Two Nimrod receptors, NimC1 and Eater, synergistically contribute to bacterial phagocytosis in Drosophila melanogaster. FEBS J 286:2670–2691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mellroth P, Karlsson J, Steiner H (2003) A scavenger function for a Drosophila peptidoglycan recognition protein. J Biol Chem 278:7059–7064

    Article  CAS  PubMed  Google Scholar 

  • Metchnikoff E (1884) Über eine Sprosspilzkrankheit der Daphnien; Beitrag zur lehre über Kampf der Phagocyten gegen Krankheitserreger. Archiv Für Pathologische Anatomie Und Physiologie Und Für Klinische Medecin 96:177–195

    Google Scholar 

  • Michel T, Reichhart J, Hoffmann JA, Royet J (2001) Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature 414:756–759

    Article  CAS  PubMed  Google Scholar 

  • Ming M, Obata F, Kuranaga E, Miura M (2014) Persephone/Spatzle pathogen sensors mediate the activation of Toll receptor signaling in response to endogenous danger signals in apoptosis-deficient Drosophila. J Biol Chem 289:7558–7568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishima Y, Quintin J, Aimanianda V, Kellenberger C, Coste F, Clavaud C, Hetru C, Hoffmann JA, Latge JP, Ferrandon D et al (2009) The N-terminal domain of drosophila gram-negative binding protein 3 (GNBP3) defines a novel family of fungal pattern recognition receptors. J Biol Chem 284:28687–28697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mondotte JA, Gausson V, Frangeul L, Blanc H, Lambrechts L, Saleh MC (2018) Immune priming and clearance of orally acquired RNA viruses in Drosophila. Nat Microbiol 3:1394–1403

    Article  CAS  PubMed  Google Scholar 

  • Mondotte JA, Gausson V, Frangeul L, Suzuki Y, Vazeille M, Mongelli V, Blanc H, Failloux AB, Saleh MC (2020) Evidence for long-lasting transgenerational antiviral immunity in insects. Cell reports 33:108506

  • Montanari M, Royet J (2021) Impact of microorganisms and parasites on neuronally controlled Drosophila behaviours. Cells 10:2350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukae N, Yokoyama H, Yokokura T, Sakoyama Y, Nagata S (2002) Activation of the innate immunity in Drosophila by endogenous chromosomal DNA that escaped apoptotic degradation. Genes Dev 16:2662–2671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muta T, Iwanaga S (1996) The role of hemolymph coagulation in innate immunity. Curr Opin Immunol 8:41–47

    Article  CAS  PubMed  Google Scholar 

  • Nam HJ, Jang IH, You H, Lee KA, Lee WJ (2012) Genetic evidence of a redox-dependent systemic wound response via Hayan protease-phenoloxidase system in Drosophila. Embo J 31:1253–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nappi AJ, Vass E, Frey F, Carton Y (1995) Superoxide anion generation in Drosophila during melanotic encapsulation of parasites. Eur J Cell Biol 68:450–456

    CAS  PubMed  Google Scholar 

  • Nehme NT, Liegeois S, Kele B, Giammarinaro P, Pradel E, Hoffmann JA, Ewbank JJ Ferrandon D (2007) A model of bacterial intestinal infections in Drosophila melanogaster. PLoS Pathog 3:e173

  • Nehme NT, Quintin J, Cho JH, Lee J, Lafarge MC, Kocks C, Ferrandon D (2011) Relative roles of the cellular and humoral responses in the Drosophila host defense against three Gram-positive bacterial infections. PLoS One 6:e14743

  • Neyen C, Binggeli O, Roversi P, Bertin L, Sleiman MB, Lemaitre B (2015) The Black cells phenotype is caused by a point mutation in the Drosophila pro-phenoloxidase 1 gene that triggers melanization and hematopoietic defects. Dev Comp Immunol 50:166–174

    Article  CAS  PubMed  Google Scholar 

  • Neyen C, Poidevin M, Roussel A, Lemaitre B (2012) Tissue- and ligand-specific sensing of gram-negative infection in drosophila by PGRP-LC isoforms and PGRP-LE. J Immunol 189:1886–1897

    Article  CAS  PubMed  Google Scholar 

  • Neyen C, Runchel C, Schupfer F, Meier P, Lemaitre B (2016) The regulatory isoform rPGRP-LC induces immune resolution via endosomal degradation of receptors. Nat Immunol 17:1150–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niethammer P (2016) The early wound signals. Curr Opin Genet Dev 40:17–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nonaka S, Nagaosa K, Mori T, Shiratsuchi A, Nakanishi Y (2013) Integrin alphaPS3/betanu-mediated phagocytosis of apoptotic cells and bacteria in Drosophila. J Biol Chem 288:10374–10380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nüsslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287:795–801

    Article  PubMed  Google Scholar 

  • O'Connor JT, Stevens AC, Shannon EK, Akbar FB, LaFever KS, Narayanan NP, Gailey CD, Hutson MS, Page-McCaw A (2021) Proteolytic activation of growth-blocking peptides triggers calcium responses through the GPCR Mthl10 during epithelial wound detection. Dev Cell 56:2160–2175 e2165

  • Ochiai M, Ashida M (1988) Purification of a beta-1,3-glucan recognition protein in the prophenoloxidase activating system from hemolymph of the silkworm, Bombyx mori. J Biol Chem 263:12056–12062

    Article  CAS  PubMed  Google Scholar 

  • Onfelt Tingvall T, Roos E, Engstrom Y (2001) The imd gene is required for local Cecropin expression in Drosophila barrier epithelia. EMBO Rep 2:239–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pahl HL, Krauss B, Schulze-Osthoff K, Decker T, Traenckner EB, Vogt M, Myers C, Parks T, Warring P, Muhlbacher A et al (1996) The immunosuppressive fungal metabolite gliotoxin specifically inhibits transcription factor NF-kappaB. J Exp Med 183:1829–1840

    Article  CAS  PubMed  Google Scholar 

  • Paik D, Monahan A, Caffrey DR, Elling R, Goldman WE, Silverman N (2017) SLC46 Family transporters facilitate cytosolic innate immune recognition of monomeric peptidoglycans. J Immunol 199:263–270

    Article  CAS  PubMed  Google Scholar 

  • Pais IS, Valente RS, Sporniak M, Teixeira L (2018) Drosophila melanogaster establishes a species-specific mutualistic interaction with stable gut-colonizing bacteria. PLoS Biol 16:e2005710

  • Palmer WH, Joosten J, Overheul GJ, Jansen PW, Vermeulen M, Obbard DJ, Van Rij RP (2019) Induction and suppression of NF-kappaB signalling by a DNA virus of Drosophila. J Virol 93:e01443-e11418

    Article  PubMed  PubMed Central  Google Scholar 

  • Paquette N, Conlon J, Sweet C, Rus F, Wilson L, Pereira A, Rosadini CV, Goutagny N, Weber AN, Lane WS et al (2012) Serine/threonine acetylation of TGFbeta-activated kinase (TAK1) by Yersinia pestis YopJ inhibits innate immune signaling. Proc Natl Acad Sci U S A 109:12710–12715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paradkar PN, Trinidad L, Voysey R, Duchemin JB, Walker PJ (2012) Secreted Vago restricts West Nile virus infection in Culex mosquito cells by activating the Jak-STAT pathway. Proc Natl Acad Sci U S A 109:18915–18920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paredes JC, Welchman DP, Poidevin M, Lemaitre B (2011) Negative regulation by amidase PGRPs shapes the Drosophila antibacterial response and protects the fly from innocuous infection. Immunity 35:770–779

    Article  CAS  PubMed  Google Scholar 

  • Park JW, Kim CH, Kim JH, Je BR, Roh KB, Kim SJ, Lee HH, Ryu JH, Lim JH, Oh BH et al (2007) Clustering of peptidoglycan recognition protein-SA is required for sensing lysine-type peptidoglycan in insects. Proc Natl Acad Sci U S A 104:6602–6607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearson A, Lux A, Krieger M (1995) Expression cloning of dSR-CI, a class C macrophage-specific scavenger receptor from Drosophila melanogaster. Proc Natl Acad Sci U S A 92:4056–4060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perrin J, Mortier M, Jacomin AC, Viargues P, Thevenon D, Fauvarque MO (2015) The nonaspanins TM9SF2 and TM9SF4 regulate the plasma membrane localization and signalling activity of the peptidoglycan recognition protein PGRP-LC in Drosophila. J Innate Immun 7:37–46

    Article  CAS  PubMed  Google Scholar 

  • Philips JA, Rubin EJ, Perrimon N (2005) Drosophila RNAi screen reveals CD36 family member required for mycobacterial infection. Science 309:1251–1253

    Article  CAS  PubMed  Google Scholar 

  • Pili-Floury S, Leulier F, Takahashi K, Saigo K, Samain E, Ueda R, Lemaitre B (2004) In vivo RNA interference analysis reveals an unexpected role for GNBP1 in the defense against Gram-positive bacterial infection in Drosophila adults. J Biol Chem 279:12848–12853

    Article  CAS  PubMed  Google Scholar 

  • Poirier EZ, Goic B, Tome-Poderti L, Frangeul L, Boussier J, Gausson V, Blanc H, Vallet T, Loyd H, Levi LI et al (2018) Dicer-2-dependent generation of viral DNA from defective genomes of RNA viruses modulates antiviral immunity in insects. Cell Host Microbe 23:353–365 e358

  • Qiao X, Wang L, Song L (2021) The primitive interferon-like system and its antiviral function in molluscs. Dev Comp Immunol 118:103997

  • Quintin J (2009) Études de la famille des GNBP/ßGRP dans la réponse immunitaire de la mouche du vinaigre Drosophila melanogaster et des relations entre cet hôte et les champignons opportunistes du genre Candida. (Université de Strasbourg)

  • Quintin J, Asmar J, Matskevich AA, Lafarge MC, Ferrandon D (2013) The Drosophila toll pathway controls but does not clear Candida glabrata infections. J Immunol 190:2818–2827

    Article  CAS  PubMed  Google Scholar 

  • Ramet M, Manfruelli P, Pearson A, Mathey-Prevot B, Ezekowitz RA (2002) Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli. Nature 416:644–648

    Article  CAS  PubMed  Google Scholar 

  • Ramond E, Petrignani B, Dudzic JP, Boquete JP, Poidevin M, Kondo S, Lemaitre B (2020) The adipokine NimrodB5 regulates peripheral hematopoiesis in Drosophila. FEBS J 287:3399–3426

    Article  CAS  PubMed  Google Scholar 

  • Razzell W, Evans IR, Martin P, Wood W (2013) Calcium flashes orchestrate the wound inflammatory response through DUOX activation and hydrogen peroxide release. Curr Biol 23:424–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reiser JB, Teyton L, Wilson IA (2004) Crystal structure of the Drosophila peptidoglycan recognition protein (PGRP)-SA at 1.56 A resolution. J Mol Biol 340:909–917

    Article  CAS  PubMed  Google Scholar 

  • Roh KB, Kim CH, Lee H, Kwon HM, Park JW, Ryu JH, Kurokawa K, Ha NC, Lee WJ, Lemaitre B et al (2009) Proteolytic cascade for the activation of the insect toll pathway induced by the fungal cell wall component. J Biol Chem 284:19474–19481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Royet J, Dziarski R (2007) Peptidoglycan recognition proteins: pleiotropic sensors and effectors of antimicrobial defences. Nat Rev Microbiol 5:264–277

    Article  CAS  PubMed  Google Scholar 

  • Rubin GM, Spradling AC (1982) Genetic transformation of Drosophila with transposable elements vectors. Science 218:348–353

    Article  CAS  PubMed  Google Scholar 

  • Rutschmann S, Jung AC, Rui Z, Silverman N, Hoffmann JA, Ferrandon D (2000) Role of Drosophila IKKg in a Toll-independent antibacterial immune response. Nat Immunology 1:342–347

    Article  CAS  Google Scholar 

  • Ryu JH, Ha EM, Oh CT, Seol J-H, Brey P, Jin I, Lee DL, Kim J, Lee D, Lee WJ (2006) An essential complementary role of NF-kappaB pathway to microbicidal oxidants in Drosophila gut immunity. Embo J 25:3693–3701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu JH, Kim SH, Lee HY, Bai JY, Nam YD, Bae JW, Lee DG, Shin SC, Ha EM, Lee WJ (2008) Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism in Drosophila. Science 319:777–782

    Article  CAS  PubMed  Google Scholar 

  • Sanchez Bosch P, Makhijani K, Herboso L, Gold KS, Baginsky R, Woodcock KJ, Alexander B, Kukar K, Corcoran S, Jacobs T et al (2019) Adult Drosophila lack hematopoiesis but rely on a blood cell reservoir at the respiratory epithelia to relay infection signals to surrounding tissues. Dev Cell 51:787–803 e785

  • Savill J, Hogg N, Ren Y, Haslett C (1992) Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis. J Clin Invest 90:1513–1522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt RL, Rinaldo FM, Hesse SE, Hamada M, Ortiz Z, Beleford DT, Page-McCaw A, Platt JL, Tang AH (2011) Cleavage of PGRP-LC receptor in the Drosophila IMD pathway in response to live bacterial infection in S2 cells. Self Nonself 2:125–141

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmucker D, Clemens JC, Shu H, Worby CA, Xiao J, Muda M, Dixon JE, Zipursky SL (2000) Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell 101:671–684

    Article  CAS  PubMed  Google Scholar 

  • Schneider J, Imler JL (2021) Sensing and signalling viral infection in Drosophila. Dev Comp Immunol 117:103985

  • Shia AK, Glittenberg M, Thompson G, Weber AN, Reichhart JM, Ligoxygakis P (2009) Toll-dependent antimicrobial responses in Drosophila larval fat body require Spatzle secreted by haemocytes. J Cell Sci 122:4505–4515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin SC, Kim SH, You H, Kim B, Kim AC, Lee KA, Yoon JH, Ryu JH, Lee WJ (2011) Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science 334:670–674

    Article  CAS  PubMed  Google Scholar 

  • Shiratsuchi A, Mori T, Sakurai K, Nagaosa K, Sekimizu K, Lee BL, Nakanishi Y (2012) Independent recognition of Staphylococcus aureus by two receptors for phagocytosis in Drosophila. J Biol Chem 287:21663–21672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinha NK, Iwasa J, Shen PS, Bass BL (2018) Dicer uses distinct modules for recognizing dsRNA termini. Science 359:329–334

    Article  CAS  PubMed  Google Scholar 

  • Sinha NK, Trettin KD, Aruscavage PJ, Bass BL (2015) Drosophila dicer-2 cleavage is mediated by helicase- and dsRNA termini-dependent states that are modulated by Loquacious-PD. Mol Cell 58:406–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slavik KM, Morehouse BR, Ragucci AE, Zhou W, Ai X, Chen Y, Li L, Wei Z, Bahre H, Konig M et al (2021) cGAS-like receptors sense RNA and control 3’2’-cGAMP signalling in Drosophila. Nature 597:109–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith-Bolton R (2016) Drosophila imaginal discs as a model of epithelial wound repair and regeneration. Adv Wound Care (new Rochelle) 5:251–261

    Article  Google Scholar 

  • Soderhall K, Cerenius L (1998) Role of the prophenoloxidase-activating system in invertebrate immunity. Curr Opin Immunol 10:23–28

    Article  CAS  PubMed  Google Scholar 

  • Soldano A, Alpizar YA, Boonen B, Franco L, Lopez-Requena A, Liu G, Mora N, Yaksi E, Voets T, Vennekens R et al (2016) Gustatory-mediated avoidance of bacterial lipopolysaccharides via TRPA1 activation in Drosophila. eLife 5:e13133

  • Somogyi K, Sipos B, Penzes Z, Kurucz E, Zsamboki J, Hultmark D, Ando I (2008) Evolution of genes and repeats in the Nimrod superfamily. Mol Biol Evol 25:2337–2347

    Article  CAS  PubMed  Google Scholar 

  • Song W, Veenstra JA, Perrimon N (2014) Control of lipid metabolism by tachykinin in Drosophila. Cell Rep 9:40–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srinivasan N, Gordon O, Ahrens S, Franz A, Deddouche S, Chakravarty P, Phillips D, Yunus AA, Rosen MK, Valente RS et al (2016) Actin is an evolutionarily-conserved damage-associated molecular pattern that signals tissue injury in Drosophila melanogaster. eLife 5:e19662

  • Steiner H, Hultmark D, Engström A, Bennich H, Boman HG (1981) Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292:246–248

    Article  CAS  PubMed  Google Scholar 

  • Stensmyr MC, Dweck HK, Farhan A, Ibba I, Strutz A, Mukunda L, Linz J, Grabe V, Steck K, Lavista-Llanos S et al (2012) A conserved dedicated olfactory circuit for detecting harmful microbes in Drosophila. Cell 151:1345–1357

    Article  CAS  PubMed  Google Scholar 

  • Stramer BM, Dionne MS (2014) Unraveling tissue repair immune responses in flies. Semin Immunol 26:310–314

    Article  CAS  PubMed  Google Scholar 

  • Stroschein-Stevenson SL, Foley E, O'Farrell PH, Johnson AD (2006) Identification of Drosophila gene products required for phagocytosis of Candida albicans. PLoS Biol 4:e4

  • Stuart LM, Deng J, Silver JM, Takahashi K, Tseng AA, Hennessy EJ, Ezekowitz RA, Moore KJ (2005) Response to Staphylococcus aureus requires CD36-mediated phagocytosis triggered by the COOH-terminal cytoplasmic domain. J Cell Biol 170:477–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stuart LM, Ezekowitz RA (2008) Phagocytosis and comparative innate immunity: learning on the fly. Nat Rev Immunol 8:131–141

    Article  CAS  PubMed  Google Scholar 

  • Sugumaran M, Barek H (2016) Critical analysis of the melanogenic pathway in insects and higher animals. Int J Mol Sci 17:1753

    Article  PubMed Central  Google Scholar 

  • Tabuchi Y, Shiratsuchi A, Kurokawa K, Gong JH, Sekimizu K, Lee BL, Nakanishi Y (2010) Inhibitory role for D-alanylation of wall teichoic acid in activation of insect Toll pathway by peptidoglycan of Staphylococcus aureus. J Immunol 185:2424–2431

    Article  CAS  PubMed  Google Scholar 

  • Takahasi K, Ochiai M, Horiuchi M, Kumeta H, Ogura K, Ashida M, Inagaki F (2009) Solution structure of the silkworm betaGRP/GNBP3 N-terminal domain reveals the mechanism for beta-1,3-glucan-specific recognition. Proc Natl Acad Sci U S A 106:11679–11684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takehana A, Katsuyama T, Yano T, Oshima Y, Takada H, Aigaki T, Kurata S (2002) Overexpression of a pattern-recognition receptor, peptidoglycan-recognition protein-LE, activates imd/relish-mediated antibacterial defense and the prophenoloxidase cascade in Drosophila larvae. Proc Natl Acad Sci U S A 99:13705–13710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takehana A, Yano T, Mita S, Kotani A, Oshima Y, Kurata S (2004) Peptidoglycan recognition protein (PGRP)-LE and PGRP-LC act synergistically in Drosophila immunity. Embo J 23:4690–4700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanji T, Hu X, Weber AN, Ip YT (2007) Toll and IMD pathways synergistically activate an innate immune response in Drosophila melanogaster. Mol Cell Biol 27:4578–4588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanji T, Yun EY, Ip YT (2010) Heterodimers of NF-{kappa}B transcription factors DIF and Relish regulate antimicrobial peptide genes in Drosophila. Proc Natl Acad Sci U S A 107:14715–14720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tassetto M, Kunitomi M, Andino R (2017) Circulating immune cells mediate a systemic RNAi-based adaptive antiviral response in Drosophila. Cell 169:314–325 e313

  • Theopold U, Schmidt O, Soderhall K, Dushay MS (2004) Coagulation in arthropods: defence, wound closure and healing. Trends Immunol 25:289–294

    Article  CAS  PubMed  Google Scholar 

  • Tsai CR, Wang Y, Galko MJ (2018) Crawling wounded: molecular genetic insights into wound healing from Drosophila larvae. Int J Dev Biol 62:479–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsarouhas V, Yao L, Samakovlis C (2014) Src kinases and ERK activate distinct responses to Stitcher receptor tyrosine kinase signaling during wound healing in Drosophila. J Cell Sci 127:1829–1839

    Article  CAS  PubMed  Google Scholar 

  • Tzou P, Ohresser S, Ferrandon D, Capovilla M, Reichhart JM, Lemaitre B, Hoffmann JA, Imler JL (2000) Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia. Immunity 13:737–748

    Article  CAS  PubMed  Google Scholar 

  • Veillard F, Troxler L, Reichhart JM (2016) Drosophila melanogaster clip-domain serine proteases: structure, function and regulation. Biochimie 122:255–269

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Gilbert RJ, Atilano ML, Filipe SR, Gay NJ, Ligoxygakis P (2008) Peptidoglycan recognition protein-SD provides versatility of receptor formation in Drosophila immunity. Proc Natl Acad Sci U S A 105:11881–11886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Weber AN, Atilano ML, Filipe SR, Gay NJ, Ligoxygakis P (2006) Sensing of Gram-positive bacteria in Drosophila: GNBP1 is needed to process and present peptidoglycan to PGRP-SA. Embo J 25:5005–5014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Tsarouhas V, Xylourgidis N, Sabri N, Tiklova K, Nautiyal N, Gallio M, Samakovlis C (2009) The tyrosine kinase Stitcher activates Grainy head and epidermal wound healing in Drosophila. Nat Cell Biol 11:890–895

    Article  CAS  PubMed  Google Scholar 

  • Watson FL, Puttmann-Holgado R, Thomas F, Lamar DL, Hughes M, Kondo M, Rebel VI, Schmucker D (2005) Extensive diversity of Ig-superfamily proteins in the immune system of insects. Science 309:1874–1878

    Article  CAS  PubMed  Google Scholar 

  • Weavers H, Martin P (2020) The cell biology of inflammation: from common traits to remarkable immunological adaptations. J Cell Biol 219:e202004003

  • Weavers H, Wood W, Martin P (2019) Injury activates a dynamic cytoprotective network to confer stress resilience and drive repair. Curr Biol 29:3851–3862 e3854

  • Weber AN, Tauszig-Delamasure S, Hoffmann JA, Lelievre E, Gascan H, Ray KP, Morse MA, Imler JL, Gay NJ (2003) Binding of the Drosophila cytokine Spatzle to Toll is direct and establishes signaling. Nat Immunol 4:794–800

    Article  CAS  PubMed  Google Scholar 

  • Werner T, Liu G, Kang D, Ekengren S, Steiner H, Hultmark D (2000) A family of peptidoglycan recognition proteins in the fruit fly Drosophila melanogaster. Proc Natl Acad Sci U S A 97:13772–13777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • West C, Silverman N (2018) p38b and JAK-STAT signaling protect against Invertebrate iridescent virus 6 infection in Drosophila. PLoS Pathog 14:e1007020

  • Wojtowicz WM, Flanagan JJ, Millard SS, Zipursky SL, Clemens JC (2004) Alternative splicing of Drosophila Dscam generates axon guidance receptors that exhibit isoform-specific homophilic binding. Cell 118:619–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodcock KJ, Kierdorf K, Pouchelon CA, Vivancos V, Dionne MS, Geissmann F (2015) Macrophage-derived upd3 cytokine causes impaired glucose homeostasis and reduced lifespan in Drosophila fed a lipid-rich diet. Immunity 42:133–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Chen ZJ (2014) Innate immune sensing and signaling of cytosolic nucleic acids. Annu Rev Immunol 32:461–488

    Article  CAS  PubMed  Google Scholar 

  • Wu SC, Liao CW, Pan RL, Juang JL (2012) Infection-induced intestinal oxidative stress triggers organ-to-organ immunological communication in Drosophila. Cell Host Microbe 11:410–417

    Article  CAS  PubMed  Google Scholar 

  • Yakubovich N, Silva EA, O’Farrell PH (2010) Nitric oxide synthase is not essential for Drosophila development. Curr Biol 20:R141-142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Zhao Y, Yu J, Fan Z, Gong ST, Tang H, Pan L (2019) Sugar alcohols of polyol pathway serve as alarmins to mediate local-systemic innate immune communication in Drosophila. Cell Host Microbe 26:240–251 e248

  • Yano T, Mita S, Ohmori H, Oshima Y, Fujimoto Y, Ueda R, Takada H, Goldman WE, Fukase K, Silverman N et al (2008) Autophagic control of listeria through intracellular innate immune recognition in drosophila. Nat Immunol 9:908–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida H, Kinoshita K, Ashida M (1996) Purification of a peptidoglycan recognition protein from hemolymph of the silkworm, Bombyx mori. J Biol Chem 271:13854–13860

    Article  CAS  PubMed  Google Scholar 

  • Yoshida H, Ochiai M, Ashida M (1986) Beta-1,3-glucan receptor and peptidoglycan receptor are present as separate entities within insect prophenoloxidase activating system. Biochem Biophys Res Commun 141:1177–1184

    Article  CAS  PubMed  Google Scholar 

  • Zaidman-Remy A, Herve M, Poidevin M, Pili-Floury S, Kim MS, Blanot D, Oh BH, Ueda R, Mengin-Lecreulx D, Lemaitre B (2006) The Drosophila amidase PGRP-LB modulates the immune response to bacterial infection. Immunity 24:463–473

    Article  CAS  PubMed  Google Scholar 

  • Zaidman-Remy, A, Poidevin M, Herve M, Welchman DP, Paredes JC, Fahlander C, Steiner H, Mengin-Lecreulx D, Lemaitre B (2011) Drosophila immunity: analysis of PGRP-SB1 expression, enzymatic activity and function. PLoS One 6:e17231

  • Zhan XL, Clemens JC, Neves G, Hattori D, Flanagan JJ, Hummel T, Vasconcelos ML, Chess A, Zipursky SL (2004) Analysis of Dscam diversity in regulating axon guidance in Drosophila mushroom bodies. Neuron 43:673–686

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Xu W, Gao X, Li W, Qi S, Guo D, Ajayi OE, Ding SW, Wu Q (2020) lncRNA sensing of a viral suppressor of RNAi activates non-canonical innate immune signaling in Drosophila. Cell Host Microbe 27:115-128.e118

    Article  CAS  PubMed  Google Scholar 

  • Zsámboki J, Csordás G, Honti V, Pintér L, Bajusz I, Galgóczy L, Andó I, Kurucz É (2013) Drosophila Nimrod proteins bind bacteria. Open Life Sciences 8:633–645

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Samuel Liegeois or Dominique Ferrandon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liegeois, S., Ferrandon, D. Sensing microbial infections in the Drosophila melanogaster genetic model organism. Immunogenetics 74, 35–62 (2022). https://doi.org/10.1007/s00251-021-01239-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-021-01239-0

Keywords

Navigation