Skip to main content

Advertisement

Log in

Fetal Echocardiographic Variables Associated with Pre-Surgical Mortality in Truncus Arteriosus: A Pilot Study

  • Research
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Truncus arteriosus (TA) is a rare congenital heart defect that can be prenatally detected by fetal echocardiography. However, prognostication and prenatal counseling focus primarily on surgical outcomes due to limited fetal and neonatal pre-surgical mortality data. We aimed to describe the incidence and identify predictors of pre-surgical mortality in prenatally detected TA. This two-center, retrospective cohort study included fetuses diagnosed with TA between 01/2010 and 04/2020. The primary outcome was pre-surgical mortality, defined by fetal or neonatal pre-surgical death or primary listing for transplantation prior to discharge. Univariable regression modeling, Chi-square tests, and t tests assessed for associations between prenatal clinical, demographic, and fetal echocardiographic (fetal-echo) variables and pre-surgical mortality. Of 23 pregnancies with prenatal diagnosis of TA, 4 (17%) were terminated. Of the remaining 19, pre-surgical mortality occurred in 4 (26%), including 2 (11%) fetal deaths and 2 (11%) neonatal pre-surgical deaths. No transplantation listings. Of liveborn fetuses (n = 17), 15 (88%) underwent a neonatal surgery, and 1 (6%) required ECMO. As compared to the survivors, the pre-surgical mortality group had a higher likelihood of having left ventricular dysfunction (0% vs. 40%; p = 0.01), right ventricular dysfunction (0% vs. 60%; p = 0.002), cardiovascular profile score < 7 (0% vs. 40%; p = 0.01), skin edema (0% vs. 40%; p = 0.01), and abnormal umbilical venous (UV) Doppler (0% vs. 60%; p = 0.002). The presence of truncal valve regurgitation or stenosis neared significance. In this cohort with prenatally diagnosed TA, there is significant pre-surgical mortality, including fetal death and neonatal pre-surgical death. Termination rate is also high. Fetal-echo variables associated with pre-surgical mortality in this cohort include ventricular dysfunction, low CVP, skin edema, and abnormal UV Doppler. Knowledge about prenatal risk factors for pre-surgical mortality may guide parental counseling and postnatal planning in prenatally diagnosed TA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Swanson TM et al (2009) Truncus arteriosus: diagnostic accuracy, outcomes, and impact of prenatal diagnosis. Pediatr Cardiol 30(3):256–261

    Article  PubMed  Google Scholar 

  2. Volpe P et al (2003) Common arterial trunk in the fetus: characteristics, associations, and outcome in a multicentre series of 23 cases. Heart 89(12):1437–1441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. van Nisselrooij AEL et al (2021) The prognosis of common arterial trunk from a fetal perspective: a prenatal cohort study and systematic literature review. Prenat Diagn 41:754–765

    Article  PubMed  PubMed Central  Google Scholar 

  4. Marginean C et al (2018) Prenatal diagnosis of the fetal common arterial trunk. A case series. Med Ultrasonogr 1(1):100–104

    Article  Google Scholar 

  5. Hanley FL et al (1993) Repair of truncus arteriosus in the neonate. J Thorac Cardiovasc Surg 105(6):1047–1056

    Article  CAS  PubMed  Google Scholar 

  6. McElhinney DB et al (1998) Trends in the management of truncal valve insufficiency. Ann Thorac Surg 65(2):517–524

    Article  CAS  PubMed  Google Scholar 

  7. Morgan CT et al (2019) Contemporary outcomes and factors associated with mortality after a fetal or postnatal diagnosis of common arterial trunk. Can J Cardiol 35(4):446–452

    Article  PubMed  Google Scholar 

  8. Duke C et al (2001) Echocardiographic features and outcome of truncus arteriosus diagnosed during fetal life. Am J Cardiol 88(12):1379–1384

    Article  CAS  PubMed  Google Scholar 

  9. Abel JS et al (2021) Prenatal diagnosis, associated findings and postnatal outcome of fetuses with truncus arteriosus communis (TAC). Arch Gynecol Obstet 304(6):1455–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Thompson LD et al (2001) Neonatal repair of truncus arteriosus: continuing improvement in outcomes. Ann Thorac Surg 72(2):391–395

    Article  CAS  PubMed  Google Scholar 

  11. Naimo PS et al (2016) Outcomes of truncus arteriosus repair in children: 35 years of experience from a single institution. Semin Thorac Cardiovasc Surg 28(2):500–511

    Article  PubMed  Google Scholar 

  12. Kalavrouziotis G et al (2006) Truncus arteriosus communis: early and midterm results of early primary repair. Ann Thorac Surg 82(6):2200–2206

    Article  PubMed  Google Scholar 

  13. Imamura M et al (1999) Improving early and intermediate results of truncus arteriosus repair: a new technique of truncal valve repair. Ann Thorac Surg 67(4):1142–1146

    Article  CAS  PubMed  Google Scholar 

  14. Schneider C et al (2005) Development of Z-scores for fetal cardiac dimensions from echocardiography. Ultrasound Obstet Gynecol 26(6):599–605

    Article  CAS  PubMed  Google Scholar 

  15. Calder L et al (1976) Truncus arteriosus communis. Clinical, angiocardiographic, and pathologic findings in 100 patients. Am Heart J 92(1):23–38

    Article  CAS  PubMed  Google Scholar 

  16. Van Praagh R, Van Praagh S (1965) The anatomy of common aorticopulmonary trunk (truncus arteriosus communis) and its embryologic implications. A study of 57 necropsy cases. Am J Cardiol 16(3):406–425

    Article  PubMed  Google Scholar 

  17. Zyblewski SC et al (2009) Chromosomal anomalies influence parental treatment decisions in relation to prenatally diagnosed congenital heart disease. Pediatr Cardiol 30(8):1105–1111

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lee MY et al (2013) Prenatal diagnosis of common arterial trunk: a single-center’s experience. Fetal Diagn Ther 34(3):152–157

    Article  PubMed  Google Scholar 

  19. Gomez O et al (2016) Accuracy of fetal echocardiography in the differential diagnosis between truncus arteriosus and pulmonary atresia with ventricular septal defect. Fetal Diagn Ther 39(2):90–99

    Article  PubMed  Google Scholar 

  20. Freud LR et al (2015) Outcomes and predictors of perinatal mortality in fetuses with ebstein anomaly or tricuspid valve dysplasia in the current era: a multicenter study. Circulation 132(6):481–489

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wertaschnigg D et al (2016) Contemporary outcomes and factors associated with mortality after a fetal or neonatal diagnosis of ebstein anomaly and tricuspid valve disease. Can J Cardiol 32(12):1500–1506

    Article  PubMed  Google Scholar 

  22. Miyoshi T et al (2017) Cardiovascular profile score as a predictor of acute intrapartum non-reassuring fetal status in infants with congenital heart defects. J Matern Fetal Neonatal Med 30(23):2831–2837

    Article  PubMed  Google Scholar 

  23. Neves AL et al (2014) Evaluation of prenatal risk factors for prediction of outcome in right heart lesions: CVP score in fetal right heart defects. J Matern Fetal Neonatal Med 27(14):1431–1437

    Article  PubMed  Google Scholar 

  24. Parikh R et al (2018) Perioperative and anesthetic considerations in truncus arteriosus. Semin Cardiothorac Vasc Anesth 22(3):285–293

    Article  PubMed  Google Scholar 

  25. Costello JM et al (2022) Double jeopardy: prematurity and congenital heart disease-what’s known and why it’s important. World J Pediatr Congenit Heart Surg 13(1):65–71

    Article  PubMed  Google Scholar 

  26. Puia-Dumitrescu M et al (2021) Survival, morbidities, and developmental outcomes among low birth weight infants with congenital heart defects. Am J Perinatol 38(13):1366–1372

    Article  PubMed  Google Scholar 

  27. Axelrod DM, Chock VY, Reddy VM (2016) Management of the preterm infant with congenital heart disease. Clin Perinatol 43(1):157–171

    Article  PubMed  Google Scholar 

  28. Dees E et al (2000) Outcome of preterm infants with congenital heart disease. J Pediatr 137(5):653–659

    Article  CAS  PubMed  Google Scholar 

  29. Formigari R et al (2009) Genetic syndromes and congenital heart defects: how is surgical management affected? Eur J Cardiothorac Surg 35(4):606–614

    Article  PubMed  Google Scholar 

  30. Bensemlali M et al (2016) Associated genetic syndromes and extracardiac malformations strongly influence outcomes of fetuses with congenital heart diseases. Arch Cardiovasc Dis 109(5):330–336

    Article  PubMed  Google Scholar 

  31. Johnson JT et al (2021) Does value vary by center surgical volume for neonates with truncus arteriosus? A multicenter study. Ann Thorac Surg 112(1):170–177

    Article  PubMed  Google Scholar 

  32. Best KE, Tennant PWG, Rankin J (2017) Survival, by birth weight and gestational age, in individuals with congenital heart disease: a population-based study. J Am Heart Assoc. https://doi.org/10.1161/JAHA.116.005213

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

KC, SC, and NH were involved in study design. KC, SJ, and MG collected data. KC wrote the manuscript. SP, NH, SJ, and MG reviewed the manuscript. HB performed the analysis.

Corresponding author

Correspondence to Kelly Cox.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cox, K., Husain, N., Jhaveri, S. et al. Fetal Echocardiographic Variables Associated with Pre-Surgical Mortality in Truncus Arteriosus: A Pilot Study. Pediatr Cardiol 44, 1397–1405 (2023). https://doi.org/10.1007/s00246-023-03099-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-023-03099-9

Keywords

Navigation