Skip to main content
Log in

Global Solvability and Optimal Control to a Haptotaxis Cancer Invasion Model with Two Cancer Cell Species

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

This paper deals with an optimal control problem for a haptotaxis model which describes two types of cancer cell invading the surrounding healthy tissue. Cancer cells can be treated by therapeutic agents (radiotherapy or chemotherapy) considered as the control variable. Our primary goal is to characterize an optimal control which balances the therapeutic benefits with its side effects. Firstly, the global bounded weak solution of state system in spatial dimensions \(1\le N\le 5\) are obtained by using the Banach fixed-point theorem and a new iteration criterion of \(L^p\) estimates as well as the adapted Moser-type iteration technique of \(L^\infty \) estimates. Subsequently, the existence of optimal pair is proved by applying the technique of minimizing sequence. Furthermore, we derive the first-order necessary optimality condition by means of the Lipschitz continuity of the control-to-state mapping and the methods of convex perturbation. Finally, we present numerically the spatio-temporal dynamics of species, optimal control and optimal regimen of therapeutic agents administrated to illustrate the concrete realization of the theoretical results obtained in this work, and to validate some clinical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Anderson, A.R.A.: A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion. Math. Med. Biol. 22(2), 163–186 (2005)

    MATH  Google Scholar 

  2. Anderson, A.R.A., Chaplain, M.A.J., Newman, E.L., Steele, R.J.C., Thompson, A.M.: Mathematical modelling of tumour invasion and metastasis. J. Theor. Med. 2(2), 129–154 (2000)

    MATH  Google Scholar 

  3. Ansarizadeh, F., Singh, M., Richards, D.: Modelling of tumor cells regression in response to chemotherapeutic treatment. Appl. Math. Model. 48, 96–112 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Bellomo, N., Bellouquid, A., Tao, Y., Winkler, M.: Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues. Math. Models Methods Appl. Sci. 25(09), 1663–1763 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Chaplain, M.A.J., Lolas, G.: Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity. Netw. Heterogen. Med. 1(3), 399–439 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Dai, F., Liu, B.: Optimal control and pattern formation for a haptotaxis model of solid tumor invasion. J. Frankl. Inst. 356(16), 9364–9406 (2019)

    MathSciNet  MATH  Google Scholar 

  7. Dai, F., Liu, B.: Global boundedness of classical solutions to a two species cancer invasion haptotaxis model with tissue remodeling. J. Math. Anal. Appl. 483(1), 123583 (2020)

    MathSciNet  MATH  Google Scholar 

  8. De Araujo, A.L.A., De Magalhães, P.M.D.: Existence of solutions and optimal control for a model of tissue invasion by solid tumours. J. Math. Anal. Appl. 421(1), 842–877 (2015)

    MathSciNet  MATH  Google Scholar 

  9. De Araujo, A.L.A., De Magalhães, P.M.D.: Existence of solutions and local null controllability for a model of tissue invasion by solid tumors. SIAM J. Math. Anal. 50(4), 3598–3631 (2018)

    MathSciNet  MATH  Google Scholar 

  10. De Pillis, L.G., Radunskaya, A.: A mathematical tumor model with immune resistance and drug therapy: an optimal control approach. J. Theor. Med. 3(2), 79–100 (2001)

    MATH  Google Scholar 

  11. Fister, K.R., Panetta, J.C.: Optimal control applied to competing chemotherapeutic cell-kill strategies. SIAM J. Appl. Math. 63(6), 1954–1971 (2003)

    MathSciNet  MATH  Google Scholar 

  12. Fleming, W.H., Rishel, R.W.: Deterministic and Stochastic Optimal Control. Sringer, New York (1975)

    MATH  Google Scholar 

  13. Friedman, A.: Partial Differential Equations. Holt, Rinehart and Winston, New York (1969)

    MATH  Google Scholar 

  14. Gatenby, R.A., Gawlinski, G.E.T.: A reaction-diffusion model of cancer invasion. Cancer Res. 56(24), 5745–5753 (1996)

    Google Scholar 

  15. Giesselmann, J., Kolbe, N., Lukáčová-Medvid’ová, M., Sfakianakis, N.: Existence and uniqueness of global classical solutions to a two dimensional two species cancer invasion haptotaxis model. Discret. contin. Dyn. Syst. B 23(10), 4397–4431 (2018)

    MathSciNet  MATH  Google Scholar 

  16. Hanahan, D., Weinberg, R.A.: The hallmarks of cancer. Cell 100(1), 57–70 (2000)

    Google Scholar 

  17. Hellmann, N., Kolbe, N., Sfakianakis, N.: A mathematical insight in the epithelial-mesenchymal-like transition in cancer cells and its effect in the invasion of the extracellular matrix. Bull. Braz. Math. Soc. New Series 47(1), 397–412 (2016)

    MathSciNet  MATH  Google Scholar 

  18. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, vol. 840. Springer, Berlin (1981)

    Google Scholar 

  19. Horstmann, D., Winkler, M.: Boundedness vs. blow-up in a chemotaxis system. J. Differ. Equ. 215(1), 52–107 (2005)

    MathSciNet  MATH  Google Scholar 

  20. Jin, C.: Global classical solution and boundedness to a chemotaxis-haptotaxis model with re-establishment mechanisms. Bull. Lond. Math. Soc. 50(4), 598–618 (2018)

    MathSciNet  MATH  Google Scholar 

  21. Ke, Y., Zheng, J.: A note for global existence of a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant. Nonlinearity 31(10), 4602–4620 (2018)

    MathSciNet  MATH  Google Scholar 

  22. Khajanchi, S., Banerjee, S.: A strategy of optimal efficacy of T11 target structure in the treatment of brain tumor. J. Biol. Syst. 27(2), 225–255 (2019)

    MathSciNet  MATH  Google Scholar 

  23. Khajanchi, S., Ghosh, D.: The combined effects of optimal control in cancer remission. Appl. Math. Comput. 271, 375–388 (2015)

    MathSciNet  MATH  Google Scholar 

  24. Ladyz̆zenskaja, O.A., Solonnikov, V.A., Uralceva, N.N.: Linear and Quasi-Linear Equations of Parabolic Type. American Mathematical Society Translation, Providence (1968)

  25. Ledzewicz, U., Schättler, H.: Antiangiogenic therapy in cancer treatment as an optimal control problem. SIAM J. Control Optim. 46(3), 1052–1079 (2007)

    MathSciNet  MATH  Google Scholar 

  26. Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971)

    MATH  Google Scholar 

  27. Liţcanu, G., Morales-Rodrigo, C.: Asymptotic behaviour of global solutions to a model of cell invasion. Math. Models Methods Appl. Sci. 20(09), 1721–1758 (2010)

    MathSciNet  MATH  Google Scholar 

  28. Malinzi, J., Sibanda, P., Mambili-Mamboundou, H.: Analysis of virotherapy in solid tumor invasion. Math. Biosci. 263, 102–110 (2015)

    MathSciNet  MATH  Google Scholar 

  29. Mani, S.A., Guo, W., Liao, M.J., et al.: The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133(4), 704–715 (2008)

    Google Scholar 

  30. Marciniak-Czochra, A., Ptashnyk, M.: Boundedness of solutions of a haptotaxis model. Math. Models Methods Appl. Sci. 20(3), 449–476 (2010)

    MathSciNet  MATH  Google Scholar 

  31. Minelli, A., Topputo, F., Bernelli-Zazzera, F.: Controlled drug delivery in cancer immunotherapy: stability, optimization, and monte carlo analysis. SIAM J. Appl. Math. 71(6), 2229–2245 (2011)

    MathSciNet  MATH  Google Scholar 

  32. Pang, P.Y.H., Wang, Y.: Global existence of a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant. J. Differ. Equ. 263(2), 1269–1292 (2017)

    MathSciNet  MATH  Google Scholar 

  33. Pang, P.Y.H., Wang, Y.: Global boundedness of solutions to a chemotaxis-haptotaxis model with tissue remodeling. Math. Models Methods Appl. Sci. 28(11), 2211–2235 (2018)

    MathSciNet  MATH  Google Scholar 

  34. Perumpanani, A.J., Byrne, H.M.: Extracellular matrix concentration exerts selection pressure on invasive cells. Euro. J. Cancer 35(8), 1274–1280 (1999)

    Google Scholar 

  35. Reya, T., Morrison, S.J., Clarke, M.F., Weissman, I.L.: Stem cells, cancer, and cancer stem cells. Nature 414, 105–111 (2001)

    Google Scholar 

  36. Schättler, H., Ledzewicz, U.: Optimal Control for Mathematical Models of Cancer Therapies. Springer, New York (2015)

    MATH  Google Scholar 

  37. Sfakianakis, N., Kolbe, N., Hellmann, N., Lukác̆ová-Medvid’ová, M.: A multiscale approach to the migration of cancer stem cells: mathematical modelling and simulations. Bull. Math. Biol. 79(1), 209–235 (2017)

  38. Simon, J.: Compacts sets in the space \(L^p(0, T;B)\). Ann. Math. Pura Appl. 146, 65–96 (1986)

    Google Scholar 

  39. Tao, Y.: Global existence for a haptotaxis model of cancer invasion with tissue remodeling. Nonlinear Anal. Real World Appl. 12(1), 418–435 (2011)

    MathSciNet  MATH  Google Scholar 

  40. Tao, Y., Wang, M.: A combined chemotaxis–haptotaxis system: the role of logistic source. SIAM J. Appl. Math. 41(4), 1533–1558 (2009)

    MathSciNet  MATH  Google Scholar 

  41. Tao, Y., Winkler, M.: Boundedness and stabilization in a multi-dimensional chemotaxis-haptotaxis model. Proc. R. Soc. Edinb. Sect. A 144(5), 1067–1084 (2014)

    MathSciNet  MATH  Google Scholar 

  42. Tao, Y., Winkler, M.: Energy-type estimates and global solvability in a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant. J. Differ. Equ. 257(3), 784–815 (2014)

    MathSciNet  MATH  Google Scholar 

  43. Tao, Y., Winkler, M.: Large time behavior in a multidimensional chemotaxis-haptotaxis model with slow signal diffusion. SIAM J. Math. Anal. 47(6), 4229–4250 (2015)

    MathSciNet  MATH  Google Scholar 

  44. Tao, Y., Zhu, G.: Global solution to a model of tumor invasion. Appl. Math. Sci. 1(48), 2385–2398 (2007)

    MathSciNet  MATH  Google Scholar 

  45. Thiery, J.P.: Epithelial–mesenchymal transitions in tumour progression. Nat. Rev. Cancer 2, 442–454 (2002)

    Google Scholar 

  46. Walker, C., Webb, G.F.: Global existence of classical solutions for a haptotaxis model. SIAM J. Math. Anal. 38(5), 1694–1713 (2007)

    MathSciNet  MATH  Google Scholar 

  47. Wang, Y., Ke, Y.: Large time behavior of solution to a fully parabolic chemotaxis-haptotaxis model in higher dimensions. J. Differ. Equ. 260(9), 6960–6988 (2016)

    MathSciNet  MATH  Google Scholar 

  48. Wu, S.N., Wang, J.F., Shi, J.P.: Dynamics and pattern formation of a diffusive predator-prey model with predator-taxis. Math. Models Methods Appl. Sci. 28(11), 2275–2312 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors convey sincere gratitude to the anonymous referee for his/her insightful comments and constructive suggestions which resulted in a substantial improvement of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially supported by NNSF of China (Grant No. 11971185)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, F., Liu, B. Global Solvability and Optimal Control to a Haptotaxis Cancer Invasion Model with Two Cancer Cell Species. Appl Math Optim 84, 2379–2443 (2021). https://doi.org/10.1007/s00245-020-09712-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-020-09712-0

Keywords

Mathematics Subject Classification

Navigation