Skip to main content

Advertisement

Log in

Signal Intensity Evaluation in the Dentate Nucleus and Subcortical Gray Matter

Effect of Several Administrations of Gadoterate Meglumine in Multiple Sclerosis

  • Original Article
  • Published:
Clinical Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

Several studies reported gadolinium deposition in the dentate nuclei (DN) and the globus pallidus (GP) that was associated to linear GBCA administrations rather than macrocyclic. It is therefore imperative to evaluate and assess the safety of cumulative administration of gadoterate meglumine (macrocyclic). Thus, T1-weighted images (T1WI) of multiple sclerosis (MS) patients longitudinally followed for 4 years were retrospectively analyzed.

Methods

In this study 44 patients, 10 with clinically isolated syndrome (CIS), 24 relapsing-remitting MS (RRMS) and 10 primary-progressive MS (PPMS) were examined every 6 months (first four scans) and then with a 1-year interval (last two scans). Image processing consisted in reorienting unenhanced T1WI to standard space, followed by B1 inhomogeneity correction. A patient-specific template was then generated to normalize T1WI signal intensity (SI) and segment the DN and subcortical GM structures. All structures were then transformed to each patient space in order to measure the SI in each region. The cerebellar peduncles (CP) and semi-oval (SO) white matter were then manually delineated and used as reference to calculate SI ratios in the DN and subcortical GM structures. A linear mixed-effect model was finally applied to longitudinally analyze SI variations.

Results

The SI measurements performed in all structures showed no significant increases with the cumulative GBCA administration.

Conclusion

This study showed no significant SI increases within the DN and subcortical GM structures of longitudinally followed MS patients even with the cumulative administration of the macrocyclic GBCA gadoterate meglumine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CIS:

Clinically isolated syndrome

CP:

Cerebellar peduncle

DN:

Dentate Nuclei

GBCA:

Gadolinium-based contrast agent

GM:

Gray matter

GP:

Globus pallidus

MS:

Multiple sclerosis

PPMS:

Primary progressive multiple sclerosis

ROI:

Region of interest

RRMS:

Relapsing remitting multiple sclerosis

SI:

Signal intensity

SOWM:

Semi-oval white matter

WI:

Weighted images

WM:

White matter

References

  1. Mahad DH, Trapp BD, Lassmann H. Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol. 2015;14:183–93.

    Article  CAS  Google Scholar 

  2. Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, Fujihara K, Havrdova E, Hutchinson M, Kappos L, Lublin FD, Montalban X, O’Connor P, Sandberg-Wollheim M, Thompson AJ, Waubant E, Weinshenker B, Wolinsky JS. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol. 2011;69:292–302.

    Article  Google Scholar 

  3. Filippi M. Enhanced magnetic resonance imaging in multiple sclerosis. Mult Scler. 2000;6:320–6.

    Article  CAS  Google Scholar 

  4. Kanal E, Maravilla K, Rowley HA. Gadolinium contrast agents for CNS imaging: current concepts and clinical evidence. AJNR Am J Neuroradiol. 2014;35:2215–26.

    Article  CAS  Google Scholar 

  5. Radbruch A. Are some agents less likely to deposit gadolinium in the brain? Magn Reson Imaging. 2016;34:1351–4.

    Article  CAS  Google Scholar 

  6. Grobner T. Gadolinium—a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant. 2006;21:1104–8. Erratum in: Nephrol Dial Transplant. 2006;21:1745.

    Article  CAS  Google Scholar 

  7. Kanda T, Ishii K, Kawaguchi H, Kitajima K, Takenaka D. High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology. 2014;270:834–41.

    Article  Google Scholar 

  8. McDonald RJ, McDonald JS, Kallmes DF, Jentoft ME, Murray DL, Thielen KR, Williamson EE, Eckel LJ. Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology. 2015;275:772–82.

    Article  Google Scholar 

  9. Errante Y, Cirimele V, Mallio CA, Di Lazzaro V, Zobel BB, Quattrocchi CC. Progressive increase of T1 signal intensity of the dentate nucleus on unenhanced magnetic resonance images is associated with cumulative doses of intravenously administered gadodiamide in patients with normal renal function, suggesting dechelation. Invest Radiol. 2014;49:685–90.

    Article  CAS  Google Scholar 

  10. Ramalho J, Castillo M, AlObaidy M, Nunes RH, Ramalho M, Dale BM, Semelka RC. High signal intensity in globus pallidus and dentate nucleus on unenhanced T1-weighted MR images: evaluation of two linear gadolinium-based contrast agents. Radiology. 2015;276:836–44.

    Article  Google Scholar 

  11. Cao Y, Huang DQ, Shih G, Prince MR. Signal change in the dentate nucleus on T1-weighted MR images after multiple administrations of gadopentetate dimeglumine versus gadobutrol. AJR Am J Roentgenol. 2016;206:414–9.

    Article  Google Scholar 

  12. Radbruch A, Weberling LD, Kieslich PJ, Eidel O, Burth S, Kickingereder P, Heiland S, Wick W, Schlemmer HP, Bendszus M. Gadolinium retention in the dentate nucleus and globus pallidus is dependent on the class of contrast agent. Radiology. 2015;275:783–91.

    Article  Google Scholar 

  13. Tedeschi E, Palma G, Canna A, Cocozza S, Russo C, Borrelli P, Lanzillo R, Angelini V, Postiglione E, Morra VB, Salvatore M, Brunetti A, Quarantelli M. In vivo dentate nucleus MRI relaxometry correlates with previous administration of Gadolinium-based contrast agents. Eur Radiol. 2016;26:4577–84.

    Article  Google Scholar 

  14. Kanda T, Osawa M, Oba H, Toyoda K, Kotoku J, Haruyama T, Takeshita K, Furui S. High signal intensity in dentate nucleus on unenhanced T1-weighted MR images: association with linear versus macrocyclic gadolinium chelate administration. Radiology. 2015;275:803–9.

    Article  Google Scholar 

  15. Ramalho J, Ramalho M, AlObaidy M, Nunes RH, Castillo M, Semelka RC. T1 Signal-intensity increase in the dentate nucleus after multiple exposures to gadodiamide: intraindividual comparison between 2 commonly used sequences. AJNR Am J Neuroradiol. 2016;37:1427–31.

    Article  CAS  Google Scholar 

  16. Miller JH, Hu HH, Pokorney A, Cornejo P, Towbin R. MRI brain signal intensity changes of a child during the course of 35 gadolinium contrast examinations. Pediatrics. 2015;136:e1637–40.

    Article  Google Scholar 

  17. Stojanov DA, Aracki-Trenkic A, Vojinovic S, Benedeto-Stojanov D, Ljubisavljevic S. Increasing signal intensity within the dentate nucleus and globus pallidus on unenhanced T1W magnetic resonance images in patients with relapsing-remitting multiple sclerosis: correlation with cumulative dose of a macrocyclic gadolinium-based contrast agent, gadobutrol. Eur Radiol. 2016;26:807–15.

    Article  Google Scholar 

  18. Eisele P, Alonso A, Szabo K, Ebert A, Ong M, Schoenberg SO, Gass A. Lack of increased signal intensity in the dentate nucleus after repeated administration of a macrocyclic contrast agent in multiple sclerosis: An observational study. Medicine (Baltimore). 2016;95:e4624.

    Article  CAS  Google Scholar 

  19. Eisele P, Konstandin S, Szabo K, Ong M, Zöllner F, Schad LR, Schoenberg SO, Gass A. Sodium MRI of T1 high signal intensity in the dentate nucleus due to gadolinium deposition in multiple sclerosis. J Neuroimaging. 2017;27:372–5.

    Article  Google Scholar 

  20. Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM. FSL. Neuroimage. 2012;62:782–90.

    Article  Google Scholar 

  21. Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, Gee JC. N4ITK: improved N3 bias correction. IEEE Trans Med Imaging. 2010;29:1310–20.

    Article  Google Scholar 

  22. Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC. A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage. 2011;54:2033–44.

    Article  Google Scholar 

  23. Diedrichsen J, Balsters JH, Flavell J, Cussans E, Ramnani N. A probabilistic MR atlas of the human cerebellum. Neuroimage. 2009;46:39–46.

    Article  Google Scholar 

  24. Pinheiro J, Bates D, DebRoy S, Sarkar D. nlme: linear and nonlinear mixed effects models. R package. version 2016. pp. 1–86.

    Google Scholar 

  25. Chehabeddine L, Al Saleh T, Baalbaki M, Saleh E, Khoury SJ, Hannoun S. Cumulative administrations of gadolinium-based contrast agents: risks of accumulation and toxicity of linear vs macrocyclic agents. Crit Rev Toxicol. 2019;49:262–79.

    Article  CAS  Google Scholar 

  26. Jaulent P, Hannoun S, Kocevar G, Rollot F, Durand-Dubief F, Vukusic S, Brisset JC, Sappey-Marinier D, Cotton F. Weekly enhanced T1-weighted MRI with Gadobutrol injections in MS patients: Is there a signal intensity increase in the dentate nucleus and the globus pallidus? Eur J Radiol. 2018;105:204–8.

    Article  Google Scholar 

  27. Hannoun S, Issa R, El Ayoubi NK, Haddad R, Baalbaki M, Yamout BI, Khoury SJ, Hourani R. Gadoterate meglumine administration in multiple sclerosis has no effect on the dentate nucleus and the globus pallidus signal intensities. Acad Radiol. 2019;26:e284–91.

    Article  Google Scholar 

  28. Schlemm L, Chien C, Bellmann-Strobl J, Dörr J, Wuerfel J, Brandt AU, Paul F, Scheel M. Gadopentetate but not gadobutrol accumulates in the dentate nucleus of multiple sclerosis patients. Mult Scler. 2017;23:963–72.

    Article  CAS  Google Scholar 

  29. Langner S, Kromrey ML, Kuehn JP, Grothe M, Domin M. Repeated intravenous administration of gadobutrol does not lead to increased signal intensity on unenhanced T1-weighted images-a voxel-based whole brain analysis. Eur Radiol. 2017;27:3687–93.

    Article  Google Scholar 

  30. Tanaka M, Nakahara K, Kinoshita M. Increased signal intensity in the dentate nucleus of patients with multiple sclerosis in comparison with neuromyelitis optica spectrum disorder after multiple doses of gadolinium contrast. Eur Neurol. 2016;75:195–8.

    Article  CAS  Google Scholar 

  31. Forslin Y, Shams S, Hashim F, Aspelin P, Bergendal G, Martola J, Fredrikson S, Kristoffersen-Wiberg M, Granberg T. Retention of gadolinium-based contrast agents in multiple sclerosis: retrospective analysis of an 18-year longitudinal study. AJNR Am J Neuroradiol. 2017;38:1311–6.

    Article  CAS  Google Scholar 

  32. Agris J, Pietsch H, Balzer T. What evidence is there that gadobutrol causes increasing signal intensity within the dentate nucleus and globus pallidus on unenhanced T1W MRI in patients with RRMS? Eur Radiol. 2016;26:816–7. https://doi.org/10.1007/s00330-015-4019-2

    Article  PubMed  Google Scholar 

  33. Marinkovic S, Gibo H, Milisavljevic M, Cetkovic M. Anatomic and clinical correlations of the lenticulostriate arteries. Clin Anat. 2001;14:190–5.

    Article  CAS  Google Scholar 

  34. Frenzel T, Lengsfeld P, Schirmer H, Hütter J, Weinmann HJ. Stability of gadolinium-based magnetic resonance imaging contrast agents in human serum at 37 degrees C. Invest Radiol. 2008;43:817–28.

    Article  CAS  Google Scholar 

  35. Murata N, Gonzalez-Cuyar LF, Murata K, Fligner C, Dills R, Hippe D, Maravilla KR. Macrocyclic and other non-group 1 gadolinium contrast agents deposit low levels of gadolinium in brain and bone tissue: preliminary results from 9 patients with normal renal function. Invest Radiol. 2016;51:447–53.

    Article  CAS  Google Scholar 

  36. Ramalho J, Ramalho M, Jay M, Burke LM, Semelka RC. Gadolinium toxicity and treatment. Magn Reson Imaging. 2016;34:1394–8.

    Article  CAS  Google Scholar 

  37. Brisset JC, Kremer S, Hannoun S, Bonneville F, Durand-Dubief F, Tourdias T, Barillot C, Guttmann C, Vukusic S, Dousset V, Cotton F; Collaborators. New OFSEP recommendations for MRI assessment of multiple sclerosis patients: Special consideration for gadolinium deposition and frequent acquisitions. J Neuroradiol. 2020;47:250–8.

    Article  Google Scholar 

  38. Öner AY, Barutcu B, Aykol Ş, Tali ET. Intrathecal contrast-enhanced magnetic resonance imaging-related brain signal changes: residual gadolinium deposition? Invest Radiol. 2017;52:195–7.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the staff of “CERMEP-Imagerie du Vivant” for their assistance in the acquisition of the data. This work has been supported by a grant provided by the French State and handled by the “Agence Nationale de la Recherche”, within the framework of the “Investments for the Future” program, under the reference ANR-10-COHO-002 Observatoire Français de la Sclérose en Plaques (OFSEP).

Author information

Authors and Affiliations

Authors

Contributions

All authors 1) made substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data; or the creation of new software used in the work; 2) drafted the work or revised it critically for important intellectual content; 3) approved the version to be published; and 4) agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Dominique Sappey-Marinier.

Ethics declarations

Conflict of interest

S. Hannoun, G. Kocevar, P. Codjia, D. Maucort-Boulch, F. Cotton, S. Vukusic, F. Durand-Dubief and D. Sappey-Marinier declare that they have no competing interests.

Ethical standards

The study was approved by the local ethics committee (CPP Sud-Est IV) and the French national agency for medicine and health products safety (ANSM). All patients gave written informed consent to participate in this study.

Additional information

The authors S. Hannoun and G. Kocevar contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hannoun, S., Kocevar, G., Codjia, P. et al. Signal Intensity Evaluation in the Dentate Nucleus and Subcortical Gray Matter. Clin Neuroradiol 32, 677–685 (2022). https://doi.org/10.1007/s00062-021-00995-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00062-021-00995-6

Keywords

Navigation