Skip to main content
Log in

Adenine derivatives as inhibitors of the casein kinase CK1delta enzyme

  • Original Research Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Overexpression of CK1δ has been associated to the development of cancer and neurodegenerative disorders, making ligands of this protein very promising drug candidates for the treatment these diseases and/or pharmacological tools for their study. A screening campaign of an in-house adenine derivative library revealed that some compounds are able to inhibit the CK1δ enzyme isoform with IC50 in the low µM range. Molecular docking analyses were performed at a X-ray structure of the enzyme, leading to the rational design of novel di- and tri-substituted adenines that were synthesized and characterized. Biological evaluation demonstrated that the new compounds are endowed with moderate CK1δ inhibitory activity. In particular, the 2-amino-9-benzyladenine (12) and its 8-bromo derivative 14, tested at a concentration of 40 µM, inhibited the enzyme leaving a residual activity of about 35% and 42%, respectively. Docking studies provided an interpretation of these data, with suggestions for a further development of these compounds to achieve more potent CK1δ inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2

Similar content being viewed by others

References

  1. Cheong JK, Virshup DM. Casein kinase 1: Complexity in the family. Int J Biochem Cell Biol. 2011;43:465–9. https://doi.org/10.1016/j.biocel.2010.12.004.

    Article  CAS  PubMed  Google Scholar 

  2. Xu RM, Carmel G, Sweet RM, Kuret J, Cheng X. Crystal structure of casein kinase-1, a phosphate-directed protein kinase. EMBO J. 1995;14:1015–23. https://doi.org/10.1002/j.1460-2075.1995.tb07082.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Du C, Yang H, Feng F, Liu W, Chen Y, Sun H. Achieving effective and selective CK1 inhibitors through structure modification. Future Med Chem. 2021;13:505–28. https://doi.org/10.4155/fmc-2020-0215.

    Article  CAS  PubMed  Google Scholar 

  4. Gross SD, Anderson RA. Casein kinase I: spatial organization and positioning of a multifunctional protein kinase family. Cell Signal. 1998;10:699–711. https://doi.org/10.1016/s0898-6568(98)00042-4.

    Article  CAS  PubMed  Google Scholar 

  5. Rowles J, Slaughter C, Moomaw C, Hsu J, Cobb MH. Purification of casein kinase I and isolation of cDNAs encoding multiple casein kinase I-like enzymes. Proc Natl Acad Sci USA. 1991;88:9548–52. https://doi.org/10.1073/pnas.88.21.9548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Knippschild U, Gocht A, Wolff S, Huber N, Lohler J, Stoter M. The casein kinase 1 family: participation in multiple cellular processes in eukaryotes. Cell Signal. 2005;17:675–89. https://doi.org/10.1016/j.cellsig.2004.12.011.

    Article  CAS  PubMed  Google Scholar 

  7. Etchegaray JP, Machida KK, Noton E, Constance CM, Dallmann R, Di Napoli MN, et al. Casein kinase 1 delta regulates the pace of the mammalian circadian clock. Mol Cell Biol. 2009;29:3853–66. https://doi.org/10.1128/MCB.00338-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kalousi A, Mylonis I, Politou AS, Chachami G, Paraskeva E, Simos G. Casein kinase 1 regulates human hypoxia-inducible factor HIF-1. J Cell Sci. 2010;123:2976–86. https://doi.org/10.1242/jcs.068122.

    Article  CAS  PubMed  Google Scholar 

  9. Greer YE, Gao B, Yang Y, Nussenzweig A, Rubin JS. Lack of Casein Kinase 1 Delta Promotes Genomic Instability - The Accumulation of DNA Damage and Down-Regulation of Checkpoint Kinase 1. PLoS One. 2017;12:e0170903 https://doi.org/10.1371/journal.pone.0170903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Graves PR, Haas DW, Hagedorn CH, DePaoli-Roach AA, Roach PJ. Molecular cloning, expression, and characterization of a 49-kilodalton casein kinase I isoform from rat testis. J Biol Chem. 1993;268:6394–401.

    Article  CAS  PubMed  Google Scholar 

  11. Lohler J, Hirner H, Schmidt B, Kramer K, Fischer D, Thal DR, et al. Immunohistochemical characterisation of cell-type specific expression of CK1delta in various tissues of young adult BALB/c mice. PLoS One. 2009;4:e4174 https://doi.org/10.1371/journal.pone.0004174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Behrend L, Stoter M, Kurth M, Rutter G, Heukeshoven J, Deppert W, et al. Interaction of casein kinase 1 delta (CK1delta) with post-Golgi structures, microtubules and the spindle apparatus. Eur J Cell Biol. 2000;79:240–51. https://doi.org/10.1078/s0171-9335(04)70027-8.

    Article  CAS  PubMed  Google Scholar 

  13. von Blume J, Knippschild U, Dequiedt F, Giamas G, Beck A, Auer A, et al. Phosphorylation at Ser244 by CK1 determines nuclear localization and substrate targeting of PKD2. EMBO J. 2007;26:4619–33. https://doi.org/10.1038/sj.emboj.7601891.

    Article  CAS  Google Scholar 

  14. Xu P, Ianes C, Gartner F, Liu C, Burster T, Bakulev V, et al. Structure, regulation, and (patho-)physiological functions of the stress-induced protein kinase CK1 delta (CSNK1D). Gene. 2019;715:144005 https://doi.org/10.1016/j.gene.2019.144005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Knippschild U, Wolff S, Giamas G, Brockschmidt C, Wittau M, Wurl PU, et al. The role of the casein kinase 1 (CK1) family in different signaling pathways linked to cancer development. Onkologie. 2005;28:508–14. https://doi.org/10.1159/000087137.

    Article  CAS  PubMed  Google Scholar 

  16. Richter J, Rudeck S, Kretz AL, Kramer K, Just S, Henne-Bruns D, et al. Decreased CK1delta expression predicts prolonged survival in colorectal cancer patients. Tumour Biol. 2016;37:8731–9. https://doi.org/10.1007/s13277-015-4745-8.

    Article  CAS  PubMed  Google Scholar 

  17. Alquezar C, Salado IG, de la Encarnacion A, Perez DI, Moreno F, Gil C, et al. Targeting TDP-43 phosphorylation by Casein Kinase-1delta inhibitors: a novel strategy for the treatment of frontotemporal dementia. Mol Neurodegener. 2016;11:36 https://doi.org/10.1186/s13024-016-0102-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Catarzi D, Varano F, Vigiani E, Lambertucci C, Spinaci A, Volpini R, et al. Casein Kinase 1delta Inhibitors as Promising Therapeutic Agents for Neurodegenerative Disorders. Curr Med Chem. 2022;29:4698–737. https://doi.org/10.2174/0929867329666220301115124.

    Article  CAS  PubMed  Google Scholar 

  19. Spinaci A, Buccioni M, Catarzi D, Cui C, Colotta V, Dal Ben D, et al. “Dual Anta-Inhibitors” of the A2A Adenosine Receptor and Casein Kinase CK1delta: Synthesis, Biological Evaluation, and Molecular Modeling Studies. Pharmaceuticals. 2023;16:167. https://doi.org/10.3390/ph16020167.

  20. Li SS, Dong YH, Liu ZP. Recent Advances in the Development of Casein Kinase 1 Inhibitors. Curr Med Chem. 2021;28:1585–604. https://doi.org/10.2174/0929867327666200713185413.

    Article  CAS  PubMed  Google Scholar 

  21. Oumata N, Bettayeb K, Ferandin Y, Demange L, Lopez-Giral A, Goddard ML, et al. Roscovitine-derived, dual-specificity inhibitors of cyclin-dependent kinases and casein kinases 1. J Med Chem. 2008;51:5229–42. https://doi.org/10.1021/jm800109e.

    Article  CAS  PubMed  Google Scholar 

  22. Bibian M, Rahaim RJ, Choi JY, Noguchi Y, Schurer S, Chen W, et al. Development of highly selective casein kinase 1delta/1epsilon (CK1delta/epsilon) inhibitors with potent antiproliferative properties. Bioorg Med Chem Lett. 2013;23:4374–80. https://doi.org/10.1016/j.bmcl.2013.05.075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Thomas A, Buccioni M, Dal Ben D, Lambertucci C, Marucci G, Santinelli C, et al. The Length and Flexibility of the 2-Substituent of 9-Ethyladenine Derivatives Modulate Affinity and Selectivity for the Human A2A Adenosine Receptor. ChemMedChem. 2016;11:1829–39. https://doi.org/10.1002/cmdc.201500595.

    Article  CAS  PubMed  Google Scholar 

  24. Rosenberg LH, Lafitte M, Quereda V, Grant W, Chen W, Bibian M, et al. Therapeutic targeting of casein kinase 1delta in breast cancer. Sci Transl Med. 2015;7:318ra202 https://doi.org/10.1126/scitranslmed.aac8773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Halekotte J, Witt L, Ianes C, Kruger M, Buhrmann M, Rauh D, et al. Optimized 4,5-Diarylimidazoles as Potent/Selective Inhibitors of Protein Kinase CK1delta and Their Structural Relation to p38alpha MAPK. Molecules. 2017;22. https://doi.org/10.3390/molecules22040522.

  26. Camaioni E, Costanzi S, Vittori S, Volpini R, Klotz K-N, Cristalli G. New substituted 9-alkylpurines as adenosine receptor ligands. Bioorg Med Chem. 1998;6:523–33. https://doi.org/10.1016/S0968-0896(98)00007-8.

    Article  CAS  PubMed  Google Scholar 

  27. Lin X, Robins MJ. Nucleic Acid Related Compounds. 136. Synthesis of 2-Amino- and 2,6-Diaminopurine Derivatives via Inverse-Electron-Demand Diels-Alder Reactions. Collect Czech Chem Commun. 2006;71:1029–41. https://doi.org/10.1135/cccc20061029.

    Article  CAS  Google Scholar 

  28. Lambertucci C, Antonini I, Buccioni M, Dal Ben D, Kachare DD, Volpini R, et al. 8-Bromo-9-alkyl adenine derivatives as tools for developing new adenosine A2A and A2B receptors ligands. Bioorg Med Chem. 2009;17:2812–22. https://doi.org/10.1016/j.bmc.2009.02.030.

    Article  CAS  PubMed  Google Scholar 

  29. Salado IG, Redondo M, Bello ML, Perez C, Liachko NF, Kraemer BC, et al. Protein kinase CK-1 inhibitors as new potential drugs for amyotrophic lateral sclerosis. J Med Chem. 2014;57:2755–72. https://doi.org/10.1021/jm500065f.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Badura L, Swanson T, Adamowicz W, Adams J, Cianfrogna J, Fisher K, et al. An inhibitor of casein kinase I epsilon induces phase delays in circadian rhythms under free-running and entrained conditions. J Pharmacol Exp Ther. 2007;322:730–8. https://doi.org/10.1124/jpet.107.122846.

    Article  CAS  PubMed  Google Scholar 

  31. Molecular Operating Environment (MOE); Chemical Computing Group ULC, 910-1010 Sherbrooke St. W., Montreal, QC H3A 2R7, Canada. https://www.chemcomp.com/Research-Citing_MOE.htm.

Download references

Acknowledgements

This research was funded by Italian Ministry of University and Research, call PRIN 2017, grant number 2017MT3993_004.

Author contributions

A.S., C.C., C.L., and D.D.B. designed the study, synthesized the compounds, performed the modeling studies, and wrote the manuscript with help from all co-authors. E.C. and S.F. performed the biological assays. M.B., G.M., G.S., and R.V. supervised the work and critically reviewed the manuscript. All authors approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Dal Ben.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spinaci, A., Lambertucci, C., Chang, C. et al. Adenine derivatives as inhibitors of the casein kinase CK1delta enzyme. Med Chem Res 33, 611–619 (2024). https://doi.org/10.1007/s00044-024-03202-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-024-03202-6

Keywords

Navigation