Skip to main content
Log in

Self-assembled amphiphilic bipyridine and bisquinoline cisplatin analogues: synthesis and anticancer properties

  • Original Research Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

We report the synthesis and characterisation of two amphiphilic cisplatin analogues derived from bipyridine and bisquinoline modified with two 3-oxo-3,6,9,12-tetraoxadocosyl groups. The amphiphilic cisplatin analogues readily form vesicles in water such as 200 to 400 nm in diameter for the bipyridine Pt complex and 1000 to 1300 nm in diameter for the bisquinoline Pt complex. The bisquinoline Pt complex exhibited a LD50 of ~24 µM for HeLa and HEK cells. On the other hand, the Pt-bipyridine complex exhibited no notable toxicity against HeLa and HEK cells under 121 µM. Amphiphilic cisplatin analogues of this type are paving the way for a new generation of active anticancer compounds that can be carried by lipoproteins for targeted anticancer therapies in clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jamieson ER, Lippard SJ. Structure, recognition, and processing of cisplatin–DNA adducts. Chem Rev. 1999;99:2467–8. https://doi.org/10.1021/cr980421n.

    Article  CAS  PubMed  Google Scholar 

  2. Tang Q, Wang X, Jin H, Mi Y, Liu L, Dong M, et al. Cisplatin-induced ototoxicity: updates on molecular mechanisms and otoprotective strategies. Eur J Pharm Biopharm. 2021;163:60–71. https://doi.org/10.1016/j.ejpb.2021.03.008.

    Article  CAS  PubMed  Google Scholar 

  3. Galanski M, Jakupec MA, Keppler BK. Update of the preclinical situation of anticancer platinum complexes: novel design strategies and innovative analytical approaches. Curr Med Chem. 2005;12:2075–94. https://doi.org/10.2174/0929867054637626.

    Article  CAS  PubMed  Google Scholar 

  4. Shamsuddin S, Takahashi I, Siddik ZH, Khokhar AR. Synthesis, characterization, and antitumor activity of a series of novel cisplatin analogs with Cis-1,4-diaminocyclohexane as nonleaving amine group. J Inorg Biochem. 1996;61:291–301. https://doi.org/10.1016/0162-0134(95)00084-4.

    Article  CAS  PubMed  Google Scholar 

  5. Jain A, Wang J, Mashack ER, Winkel BSJ, Brewer KJ. Multifunctional DNA interactions of Ru-Pt mixed metal supramolecular complexes with substituted terpyridine ligands. Inorg Chem. 2009;48:9077–4. https://doi.org/10.1021/ic900190a.

    Article  CAS  PubMed  Google Scholar 

  6. Prestayko AW. Cisplatin: current status and new developments. Academic Press:NewYork; 2013. https://doi.org/10.1016/C2013-0-05006-2.

  7. Ghosh S. Cisplatin: the first metal based anticancer drug. Bioorg Chem. 2019;88:102925. https://doi.org/10.1016/j.bioorg.2019.102925.

    Article  CAS  PubMed  Google Scholar 

  8. Desoize B, Madoulet C. Particular aspects of platinum compounds used at present in cancer treatment. Crit Rev Oncol/Hematol. 2002;42:317–5. https://doi.org/10.1016/S1040-8428(01)00219-0.

    Article  PubMed  Google Scholar 

  9. Chen SH, Chang JY. New insights into mechanisms of cisplatin resistance: from tumor cell to microenvironment. Int J Mol Sci. 2019;20:4136. https://doi.org/10.3390/ijms20174136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Song M, Cui M, Liu K. Therapeutic strategies to overcome cisplatin resistance in ovarian cancer. Eur J Med Chem. 2022;232:114205. https://doi.org/10.1016/j.ejmech.2022.114205.

    Article  CAS  PubMed  Google Scholar 

  11. Min Y, Mao CQ, Chen S, Ma G, Wang J, Liu Y. Combating the drug resistance of cisplatin using a platinum prodrug based delivery system. Angew Chem Int Ed. 2012;51:6742–7. https://doi.org/10.1002/anie.201201562.

    Article  CAS  Google Scholar 

  12. Oberoi HS, Nukolova NV, Kabanov AV, Bronich TK. Nanocarriers for delivery of platinum anticancer drugs. Adv Drug Deliv Rev. 2013;65:1667–5. https://doi.org/10.1016/j.addr.2013.09.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yim H, Park W, Kim D, Fahmy TM, Na K. A self-assembled polymeric micellar immunomodulator for cancer treatment based on cationic amphiphilic polymers. Biomaterials. 2014;35:9912–9. https://doi.org/10.1016/j.biomaterials.2014.08.029.

    Article  CAS  PubMed  Google Scholar 

  14. Stathopoulos GP. Liposomal cisplatin: a new cisplatin formulation. Anticancer Drugs. 2010;21:732–6. https://doi.org/10.1097/CAD.0b013e32833d9adf.

    Article  CAS  PubMed  Google Scholar 

  15. Stathopoulos GP, Boulikas T. Lipoplatin formulation review article. J Drug Deliv. 2012:581363. https://doi.org/10.1155/2012/581363.

  16. Aryal S, Hu CMJ, Zhang L. Polymer–cisplatin conjugate nanoparticles for acid-responsive drug delivery. ACS Nano. 2010;4:251–8. https://doi.org/10.1021/nn9014032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Burger KNJ, Staffhorst RWHM, de Vijlder HC, Velinova MJ, Bomans PH, Frederik PM, et al. Nanocapsules: lipid-coated aggregates of cisplatin with high cytotoxicity. Nat Med. 2002;8:81–4. https://doi.org/10.1038/nm0102-81.

    Article  CAS  PubMed  Google Scholar 

  18. He C, Zhang X, Yan R, Zhao P, Chen Y, Li M, et al. Enhancement of cisplatin efficacy by lipid–CaO 2 nanocarrier-mediated comprehensive modulation of the tumor microenvironment. Biomater Sci. 2019;7:4260–72. https://doi.org/10.1039/C9BM00797K.

    Article  CAS  PubMed  Google Scholar 

  19. Babak MV, Pfaffeneder-Kmen M, Meier-Menches SM, Legina MS, Theiner S, Licona C, et al. Rollover cyclometalated bipyridine platinum complexes as potent anticancer agents: impact of the ancillary ligands on the mode of action. Inorg Chem. 2018;57:2851–64. https://doi.org/10.1021/acs.inorgchem.7b03210.

    Article  CAS  PubMed  Google Scholar 

  20. Garelli N, Vierling P. Incorporation of new amphiphilic perfluoroalkylated bipyridine platinum and palladium complexes into liposomes: stability and structure-incorporation relationships. Biochim Biophys Acta Lipids Lipid Metab. 1992;1127:41–8. https://doi.org/10.1016/0005-2760(92)90199-6.

    Article  CAS  Google Scholar 

  21. Alhoshani A, Sulaiman AAA, Sobeai HMA, Qamar W, Alotaibi M, Alhazzani K, et al. Anticancer activity and apoptosis induction of gold(III) complexes containing 2,2′-bipyridine-3,3′-dicarboxylic acid and dithiocarbamates. Molecules. 2021;26:3973. https://doi.org/10.3390/molecules26133973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kergreis A, Lord RM, Pike SJ. Influence of ligand and nuclearity on the cytotoxicity of cyclometallated C^N^C platinum(II) complexes. Chem Eur. 2020;26:14938–6. https://doi.org/10.1002/chem.202002517.

    Article  CAS  Google Scholar 

  23. Mansuri-Torshizi H, Srivastava TS, Parekh HK, Chitnis MP. Synthesis, spectroscopic, cytotoxic, and DNA binding studies of binuclear 2,2’-bipyridine-platinum(II) and -palladium(II) complexes of meso-alpha,alpha’-diaminoadipic and meso-alpha,alpha’-diaminosuberic acids. J Inorg Biochem. 1992;45:135–48. https://doi.org/10.1016/0162-0134(92)80008-J.

    Article  CAS  PubMed  Google Scholar 

  24. Martínez R, Chacón-García L. The search of DNA-intercalators as antitumoral drugs: what it worked and what did not work. Curr Med Chem. 2005;12:127–51. https://doi.org/10.2174/0929867053363414.

    Article  PubMed  Google Scholar 

  25. Whittaker J, McFadyen WD, Wickham G, Wakelin LP, Murray V. The interaction of DNA-targeted platinum phenanthridinium complexes with DNA. Nucleic Acids Res. 1998;26:3933–9. https://doi.org/10.1093/nar/26.17.3933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Temple MD, McFadyen WD, Holmes RJ, Denny WA, Murray V. Interaction of cisplatin and DNA-targeted 9-aminoacridine platinum complexes with DNA. Biochemistry. 2000;39:5593–9. https://doi.org/10.1021/bi9922143.

    Article  CAS  PubMed  Google Scholar 

  27. Carland M, Grannas MJ, Cairns MJ, Roknic VJ, Denny WA, McFadyen WD, et al. Substituted 9-aminoacridine-4-carboxamides tethered to platinum(II)diamine complexes: chemistry, cytotoxicity and DNA sequence selectivity. J Inorg Biochem. 2010;104:815–9. https://doi.org/10.1016/j.jinorgbio.2010.03.011.

    Article  CAS  PubMed  Google Scholar 

  28. Wang Q, Tan G, Lawson LB, John VT, Papadopoulos KD. Liposomes in double-emulsion globules. Langmuir. 2010;26:3225–1. https://doi.org/10.1021/la9032157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Holden DA, Watkins JJ, White HS. Resistive-pulse detection of multilamellar liposomes. Langmuir. 2012;28:7572–7. https://doi.org/10.1021/la300993a.

    Article  CAS  PubMed  Google Scholar 

  30. Laurent S, Elst LV, Thirifays C, Muller RN. Paramagnetic liposomes: inner versus outer membrane relaxivity of DPPC liposomes incorporating lipophilic gadolinium complexes. Langmuir. 2008;24:4347–1. https://doi.org/10.1021/la800148a.

    Article  CAS  PubMed  Google Scholar 

  31. Dua JS, Rana AC, Bhandari AK. Liposome: methods of preparation and applications. Int J Pharm Sci Res. 2012;3. https://romanpub.com/resources/ijpsr%20v11-2020-6.pdf.

  32. Maali A, Hamed Mosavian MT. Preparation and application of nanoemulsions in the last decade (2000–2010). J Dispers Sci Technol. 2013;34:92–105. https://doi.org/10.1080/01932691.2011.648498.

    Article  CAS  Google Scholar 

  33. Zhao S, Zhang Y, Han Y, Wang J, Yang J. Preparation and characterization of cisplatin magnetic solid lipid nanoparticles (MSLNs): effects of loading procedures of Fe3O4 nanoparticles. Pharm Res. 2015;32:482–1. https://doi.org/10.1007/s11095-014-1476-2.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support from NSF grants CHE 0748913, NIH BBRC 5G12MD007592, NIFA 2019-38422-30214 and the Ralph & Kathleen Ponce de Leon Endowment are gratefully acknowledged. We thank Dr. Raymundo Rivas Caceres (Universidad Autonoma de Ciudad Juarez) for useful assistance in this study.

Author information

Authors and Affiliations

Authors

Contributions

GAG: investigation, writing original draft; SK: investigation; JHO: investigation; BAT, AMM, AGDS: characterization and investigation; JCN: conceptualization, project administration, and final draft.

Corresponding author

Correspondence to Juan C. Noveron.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzalez, G.A., Hernandez-Ortega, J., Kalagara, S. et al. Self-assembled amphiphilic bipyridine and bisquinoline cisplatin analogues: synthesis and anticancer properties. Med Chem Res 33, 268–275 (2024). https://doi.org/10.1007/s00044-023-03175-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-023-03175-y

Keywords

Navigation