Skip to main content
Log in

Signal Matched Multirate Filter Bank Design for Optimum Coding Gain and its Application in Real-Time Sleep Apnea Detection

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Various authors have designed multirate filter banks for modeling a given process. The existing algorithms, however, suffer from some major drawbacks; for example, some of these filter banks are not signal adaptive; in most of the cases the, filter computations are not efficient; moreover, the existing signal-adapted filter banks is not always optimal. To address these limitations, we propose an optimal signal matched filter bank (SMFB) to maximize the coding gain. The objective is to achieve spectral majorization and complete decorrelation of the sub-band signals. The filter bank is designed here to perfectly reconstruct only the given signal, instead of every signal from the finite energy signal space, as is typically done. These objectives are achieved by whitening the outputs of the analysis filter bank, within as well as across the channels. With these orthogonal whitened signals as inputs, the synthesis filter bank is designed to reconstruct a delayed version of the given signal. A time and order recursive least squares algorithm has been developed for the SMFB, with a single realization of the signal. The recursions of the algorithm lead to a lattice structure. Since the filter coefficients are not directly available from the lattice, a fast algorithm is developed to estimate the same using the lattice parameters. Simulation results are presented to verify the efficacy of the proposed theory. We also present an automated real-time sleep apnea detection algorithm using SMFB which gives a \(92.27\%\) accuracy, \(88.60\%\) sensitivity, and \(94.31\%\) specificity on a publicly available MIT PhysioNet Apnea-ECG dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data used to validate this study are openly available in “https://www.physionet.org/content/apnea-ecg/1.0.0/”.

References

  1. S. Akkarakaran, P.P. Vaidyanathan, On optimization of filter banks with denoising applications. 1999 IEEE International Symposium on Circuits and Systems (ISCAS) 3, 512–515 (1999). https://doi.org/10.1109/ISCAS.1999.778895

  2. M. Anitescu, F.A. Potra, An efficient procedure for maximizing the coding gain for PR filter banks. Circuits and Systems - II Analog and Digital Signal Processing (1999)

  3. R. Baraniuk, Compressive sensing [lecture notes]. Signal Process. Mag. IEEE 24(4), 118–121 (2007). https://doi.org/10.1109/MSP.2007.4286571

    Article  Google Scholar 

  4. M. Basseville, A. Benveniste, K.C. Chou, S.A. Golden, R. Nikoukhah, A.S. Willsky, Modeling and estimation of multiresolution stochastic processes. IEEE Trans. Inf. Theory 38(2), 766–784 (1992). https://doi.org/10.1109/18.119735

    Article  Google Scholar 

  5. L. Chen, X. Zhang, H. Wang, An obstructive sleep apnea detection approach using kernel density classification based on single- lead electrocardiogram. J. Med. Syst. 39, 47 (2015). https://doi.org/10.1007/s10916-015-0222-6

    Article  Google Scholar 

  6. M. De la Sen, Multirate hybrid adaptive control. IEEE Trans. Autom. Control 31(6), 582–586 (1986). https://doi.org/10.1109/TAC.1986.1104324

    Article  MATH  Google Scholar 

  7. M. De la Sen, J.L. Marco, C. Lopez-Abadia, Multi-rate adaptive control with applications to lateral dynamics of aircraft. Int. J. Control 45(3), 759–778 (1987). https://doi.org/10.1080/00207178708933768

    Article  MATH  Google Scholar 

  8. P. Desarte, B. Macq, D.T.M. Slock, Signal-adapted multiresolution transform for image coding. IEEE Trans. Inf. Theory 38(2), 897–904 (1992). https://doi.org/10.1109/18.119749

    Article  Google Scholar 

  9. M. Faal, F. Almasganj, Obstructive sleep apnea screening from unprocessed ECG signals using statistical modelling. Biomed. Signal Process. Control 68, 102685 (2021). https://doi.org/10.1016/j.bspc.2021.102685

    Article  Google Scholar 

  10. B. Fatimah, S.D. Joshi, An optimal biorthogonal M-channel signal matched FIR filter bank. 2015 International Conference on Computational Science and Computational Intelligence (CSCI), pp. 443–447 (2015). https://doi.org/10.1109/CSCI.2015.102

  11. B. Fatimah, S.D. Joshi, Multiscale modeling using signal adapted filter bank. 2019 1st International Conference on Advanced Technologies in Intelligent Control, Environment, Computing Communication Engineering (ICATIECE), pp. 299–304 (2019). https://doi.org/10.1109/ICATIECE45860.2019.9063826

  12. B. Fatimah, S.D. Joshi, Real time computationally efficient MIMO system identification algorithm. J. Signal Process. Syst. 93, 923–936 (2021). https://doi.org/10.1007/s11265-020-01619-x

    Article  Google Scholar 

  13. B. Fatimah, P. Singh, A. Singhal, R.B. Pachori, Detection of apnea events from ECG segments using Fourier decomposition method. Biomed. Signal Process. Control 61, 102005 (2020). https://doi.org/10.1016/j.bspc.2020.102005

    Article  Google Scholar 

  14. B. Friedlander, Lattice filters for adaptive processing. Proc. IEEE 70(8), 829–867 (1982). https://doi.org/10.1109/PROC.1982.12407

    Article  Google Scholar 

  15. A.L. Goldberger, L.A.N. Amaral, L. Glass, J.M. Hausdorff, P.C. Ivanov, R.G. Mark, J.E. Mietus, G.B. Moody, C.K. Peng, H.E. Stanley, PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000). https://doi.org/10.1161/01.cir.101.23.e215

    Article  Google Scholar 

  16. A. Gupta, S.D. Joshi, S. Prasad, A new approach for estimation of statistically matched wavelet. IEEE Trans. Signal Process. 53(5), 1778–1793 (2005). https://doi.org/10.1109/TSP.2005.845470

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Gupta, S.D. Joshi, S. Prasad, A new method of estimating wavelet with desired features from a given signal. Signal Process. 85(1), 147–161 (2005). https://doi.org/10.1016/j.sigpro.2004.09.008

    Article  MATH  Google Scholar 

  18. A.R. Hassan, Automatic screening of obstructive sleep apnea from single-lead electrocardiogram. 2015 International Conference on Electrical Engineering and Information Communication Technology (ICEEICT), pp. 1–6 (2015). https://doi.org/10.1109/ICEEICT.2015.7307522

  19. A.R. Hassan, Computer-aided obstructive sleep apnea detection using normal inverse Gaussian parameters and adaptive boosting. Biomed. Signal Process. Control 29, 22–30 (2016). https://doi.org/10.1016/j.bspc.2016.05.009

    Article  Google Scholar 

  20. A.R. Hassan, M.A. Haque, Computer-aided obstructive sleep apnea identification using statistical features in the EMD domain and extreme learning machine. Biomed. Phys. Eng. Express 2(3), 035003 (2016). https://doi.org/10.1088/2057-1976/2/3/035003

    Article  Google Scholar 

  21. A.R. Hassan, M.A. Haque, An expert system for automated identification of obstructive sleep apnea from single-lead ECG using random under sampling boosting. Neurocomputing 235, 122–130 (2017). https://doi.org/10.1016/j.neucom.2016.12.062

    Article  Google Scholar 

  22. A. Hossen, B.A. Ghunaimi, M.O. Hassan, Subband decomposition soft-decision algorithm for heart rate variability in patients with obstructive sleep apnea and normal controls. Signal Process. 85(1), 95–106 (2005). https://doi.org/10.1016/j.sigpro.2004.09.004

    Article  MATH  Google Scholar 

  23. P. Janbakhshi, M. Shamsollahi, Sleep apnea detection from single-lead ECG using features based on ECG-derived respiration (EDR) signals. IRBM 39, 206–218 (2018). https://doi.org/10.1016/j.irbm.2018.03.002

    Article  Google Scholar 

  24. A. Jhawar, P. Ginde, P. Patwardhan, V.M. Gadre, Coding gain optimized finite impulse response (FIR) Paraunitary (PU) filter banks. National Conference on Communications (NCC), pp. 1–5 (2010). https://doi.org/10.1109/NCC.2010.5430199

  25. H. Kando, H. Ukai, Y. Morita, Design of multirate observers and multirate control systems. Int. J. Syst. Sci. 31, 1021–1030 (2000). https://doi.org/10.1080/002077200412168

    Article  MATH  Google Scholar 

  26. A.H. Khandoker, C.K. Karmakar, M. Palaniswami, Automated recognition of patients with obstructive sleep apnoea using wavelet-based features of electrocardiogram recordings. Comput. Biol. Med. 39(1), 88–96 (2009). https://doi.org/10.1016/j.compbiomed.2008.11.003

    Article  Google Scholar 

  27. A. Kirac, P.P. Vaidyanathan, Efficient design methods of optimal FIR compaction filters for M-channel FIR subband coders. Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers, pp. 1300–1304 (1996). https://doi.org/10.1109/ACSSC.1996.599157

  28. A. Kirac, P.P. Vaidyanathan, On existence of FIR principal component filter banks. Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP ’98 (Cat. No.98CH36181) 3, pp. 1329–1332 (1998). https://doi.org/10.1109/ICASSP.1998.681691

  29. B. Lall, S.D. Joshi, R.K.P. Bhatt, Multiscale representation of stochastic processes using subband coder as modeling filter. Proc. NCC, pp. 331–335 (2007)

  30. W.S. Lu , A. Antoniou, Design of signal-adapted biorthogonal filter banks. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 48(1), 90–102 (2001). https://doi.org/10.1109/81.903191

  31. A. Mallat, A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989). https://doi.org/10.1109/34.192463

  32. M.O. Mendez, A.M. Bianchi, M. Matteucci, S. Cerutti, T. Penzel, Sleep apnea screening by autoregressive models from a single ECG lead. IEEE Trans. Biomed. Eng. 56(12), 2838–2850 (2009). https://doi.org/10.1109/TBME.2009.2029563

    Article  Google Scholar 

  33. M. Mizuochi, T. Tsuji, K. Ohnishi, Multirate sampling method for acceleration control system. IEEE Trans. Ind. Electron. 54(3), 1462–1471 (2007). https://doi.org/10.1109/TIE.2007.893002

    Article  Google Scholar 

  34. P. Moulin, M. Mihcak, Theory and design of signal-adapted FIR paraunitary filter banks. IEEE Trans. Signal Process. 46(4), 920–929 (1998). https://doi.org/10.1109/78.668546

    Article  Google Scholar 

  35. S. Nalbalwar, Some studies on Signal Matched Multirate Filter Bank. Ph.D. thesis, IITD (2008)

  36. S. Nalbalwar, S.D. Joshi, R.K. Patney, Signal matched Non-uniform filter bank. Proceedings of NCC, pp. 107–11 (2007)

  37. A. Nishad, R.B. Pachori, U.R. Acharya, Application of TQWT based filter-bank for sleep apnea screening using ECG signals. J. Ambient. Intell. Humaniz. Comput. 3, 1–12 (2018). https://doi.org/10.1007/s12652-018-0867-3

    Article  Google Scholar 

  38. M. Pagano, On periodic and multiple autoregressions. Ann. Stat. 6(6), 1310–1317 (1978). https://doi.org/10.1214/aos/1176344376

    Article  MathSciNet  MATH  Google Scholar 

  39. G.B. Papini, P. Fonseca , J. Margarito, M.M. Van Gilst, S. Overeem, J.W.M. Bergmans , R. Vullings, On the generalizability of ECG-based obstructive sleep apnea monitoring: merits and limitations of the Apnea-ECG database. 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 6022–6025 (2018). https://doi.org/10.1109/EMBC.2018.8513660

  40. C. Popeea, B. Dumitrescu, B. Jora, Efficient state-space approach for FIR filter bank completion. Signal Process. 83(9), 1973–1983 (2003). https://doi.org/10.1016/S0165-1684(03)00115-4

    Article  MATH  Google Scholar 

  41. S. Prasad, S.D. Joshi, A new recursive pseudo least squares algorithm for ARMA filtering and modeling. I. IEEE Trans. Signal Processing 40(11), 2766–2774 (1992). https://doi.org/10.1109/78.165663

    Article  MATH  Google Scholar 

  42. S. Prasad, S.D. Joshi, A new recursive pseudo least squares algorithm for ARMA filtering and modeling. II. IEEE Trans. Signal Process. 40(11), 2775–2783 (1992). https://doi.org/10.1109/78.165664

    Article  MATH  Google Scholar 

  43. K. Rajesh, R. Dhuli, T.S. Kumar, Obstructive sleep apnea detection using discrete wavelet transform-based statistical features. Comput. Biol. Med. 130, 104199 (2021). https://doi.org/10.1016/j.compbiomed.2020.104199

    Article  Google Scholar 

  44. S. Redif, J.G. McWhirter, S. Weiss, Design of FIR paraunitary filter banks for subband coding using a polynomial eigenvalue decomposition. IEEE Trans. Signal Process. 59(11), 5253–5264 (2011). https://doi.org/10.1109/TSP.2011.2163065

    Article  MathSciNet  MATH  Google Scholar 

  45. M. Sharma, S. Agarwal, U.R. Acharya, Application of an optimal class of antisymmetric wavelet filter banks for obstructive sleep apnea diagnosis using ECG signals. Comput. Biol. Med. 100, 100–113 (2018). https://doi.org/10.1016/j.compbiomed.2018.06.011

  46. M. Sharma, M. Raval, U.R. Acharya, A new approach to identify obstructive sleep apnea using an optimal orthogonal wavelet filter bank with ECG signals. Inf. Med. Unlocked 16, 100170 (2019). https://doi.org/10.1016/j.imu.2019.100170

    Article  Google Scholar 

  47. V. Sheeba, E. Elizabeth, Two-dimensional FIR signal adapted filter banks: optimality and design. Signal Process. 87(10), 2381–2391 (2007). https://doi.org/10.1016/j.sigpro.2007.03.009

    Article  MATH  Google Scholar 

  48. S. Shiliang, T. Wang, C. Song, X. Chen, E. Cui, H. Zhao, Obstructive sleep apnea recognition based on multi-bands spectral entropy analysis of short-time heart rate variability. Entropy 21, 812 (2019). https://doi.org/10.3390/e21080812

    Article  Google Scholar 

  49. H. Tao, X. Li, W. Paszke, V. Stojanovic, H. Yang, Robust PD-type iterative learning control for discrete systems with multiple time-delays subjected to polytopic uncertainty and restricted frequency-domain. Multidimensional Systems and Signal Processing 32 (2021). https://doi.org/10.1007/s11045-020-00754-9

  50. H. Tao, J. Li, Y. Chen, V. Stojanovic, H. Yang, Robust point-to-point iterative learning control with trial-varying initial conditions. IET Control Theory Appl. 14, 3344–3350 (2020). https://doi.org/10.1049/iet-cta.2020.0557

    Article  MathSciNet  Google Scholar 

  51. R.K. Tripathi, Application of intrinsic band function technique for automated detection of sleep apnea using HRV and EDR signals. Biocybern. Biomed. Eng. 38, 136–144 (2018). https://doi.org/10.1016/j.bbe.2017.11.003

    Article  Google Scholar 

  52. M.K. Tsatsanis, G.B. Giannakis, Principal component filter banks for optimal multiresolution analysis. IEEE Trans. Signal Process. 43(8), 1766–1777 (1995). https://doi.org/10.1109/78.403336

    Article  Google Scholar 

  53. P.P. Vaidyanathan, Theory of optimal orthonormal filter banks. Acoustics, Speech, and Signal Processing, 1996. ICASSP-96 Conference Proceedings., 1996 IEEE International Conference on 3, 1487–1490 (1996). https://doi.org/10.1109/ICASSP.1996.543944

  54. P.P. Vaidyanathan, Multirate Systems and Filter Banks (Prentice-Hall Inc, Eaglewood Cliff, 1993)

    MATH  Google Scholar 

  55. P.P. Vaidyanathan, A. Kirac, Results on optimal biorthogonal filter banks. IEEE Trans. Circuits Syst. II Analog Digital Signal Process. 45(8), 932–947 (1998). https://doi.org/10.1109/82.718804

    Article  MATH  Google Scholar 

  56. P. Vouras, T. Tran, Design of FIR paraunitary approximations to principal component filter banks. 2006 40th Annual Conference on Information Sciences and Systems, pp. 1372–1377 (2006). https://doi.org/10.1109/CISS.2006.286679

  57. B. Vrcelj, P.P. Vaidyanathan, Least squares signal approximation using multirate systems: multichannel nonuniform case. Conference Record of the Thirty-Fifth Asilomar Conference on Signals, Systems and Computers, pp. 553–557 (2001). https://doi.org/10.1109/ACSSC.2001.986984

  58. C. Weng, P.P. Vaidyanathan, The role of GTD in optimizing biorthogonal filter banks. 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4372–4375 (2011). https://doi.org/10.1109/ICASSP.2011.5947322

  59. C.C. Weng, P. Vaidyanathan, The role of GTD in optimizing perfect reconstruction filter banks. IEEE Trans. Signal Process. 60(1), 112–128 (2012). https://doi.org/10.1109/TSP.2011.2169252

    Article  MathSciNet  MATH  Google Scholar 

  60. G.W. Wornell, Wavelet-based representations for the 1/f family of fractal processes. Proc. IEEE 81(10), 1428–1450 (1993). https://doi.org/10.1109/5.241506

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binish Fatimah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Proof of Lemma 1: Constrained Projection

Proof

The prediction error \({\epsilon }\) is defined as

$$\begin{aligned} {\epsilon }={x}-\sum _{i=1}^{n}{{h_{i}}{s}_{2i}}. \end{aligned}$$
(30)

Since \({\epsilon }\) is confined to the orthogonal complement space of \(S_1\) (from condition 1), we can write

$$\begin{aligned}&{\epsilon }={\epsilon } \mid S_1^{\perp },\nonumber \\&\quad ={x}\mid S_1^{\perp }-\sum _{i=1}^{n}{{h_{i}}({s}_{2i}\mid {S_1^{\perp }})}. \end{aligned}$$
(31)

x can be written as

$$\begin{aligned}&{x}={x} {\vert }_{{S_1}}+ {x} {\vert }_{{S_1^{\perp }}}, \end{aligned}$$
(32)
$$\begin{aligned}&{x} {\vert }_{{S_1^{\perp }}}={x}-{x} {\vert }_{{S_1}}. \end{aligned}$$
(33)

The projections in (31) can be written as

$$\begin{aligned}&{x}\mid S_1^{\perp }={x}-\sum _{k=1}^{p}{{a_{k}} {s}_{1k}}.\end{aligned}$$
(34)
$$\begin{aligned}&\quad \text{ Similarly } \quad {s}_{2i}\mid S_1^{\perp }={{{s}}_{2i}-\sum _{k=1}^{p}{b_{ik} {s}_{1k}}}. \end{aligned}$$
(35)

Substituting the above values in (31), we get

$$\begin{aligned} {{\epsilon }}=\left( {x}-\sum _{k=1}^{p}{{a}_{k}{s}_{1k}}\right) -\sum _{i=1}^{{n}}{{h}_{i}\left( {{s}}_{2i}-\sum _{k=1}^{p}{ b_{ik} {s}_{1k}}\right) }. \end{aligned}$$
(36)

\(\square \)

The projection error, as given by (36), represents the error in projecting x onto the \(S_2\) when it is constrained to lie in the orthogonal complement space of \(S_1\).

Notations

The data vector representing a discrete time signal is denoted by \({\mathbf {x}}(n)\in {\mathbb {R}}^{1\times L}\), where \(L>>n\), as given below:

$$\begin{aligned} {\mathbf {x}}(n) \equiv \left[ \begin{array}{ccccccc} 0&\cdots&0&x(0)&x(1)&\cdots&x(n) \end{array}\right] . \end{aligned}$$

The \(1 \times L\) vector which is obtained by first introducing a delay of i to x(n) and then downsampling by M is denoted as \({\mathbf {x}}(Mn-i)\in {\mathbb {R}}^{L}\), given as follows:

$$\begin{aligned} {\mathbf {x}}(Mn-i) \equiv \left[ \begin{array}{cccccccc} 0&\cdots&0&x(M-i)&x(2M-i)&\cdots&x(Mn-i) \end{array}\right] . \end{aligned}$$
(37)

The set of N vectors, \(\{ {\mathbf {x}}(Mn-k)|i \le k \le i+N-1\}\), form a \(N \times L\) matrix, denoted as \( X_N^{Mn-i}\), and is given as follows:

$$\begin{aligned} {X}_{N}^{Mn-i}\equiv \left[ \begin{array}{c} {\mathbf {x}}(Mn-i)\\ {\mathbf {x}}(Mn-i-1)\\ \vdots \\ {\mathbf {x}}(Mn-i-N+1) \end{array}\right] .\end{aligned}$$
(38)

These notations are used in the development of the required geometrical framework for the proposed least squares algorithm.

Update Formulas Used in this Paper

Inner product update relation, [14], has been used extensively in the development of the proposed fast recursive least squares algorithm. We provide a brief discussion on the development of this formula, using notations from Appendix B.

The Span \(\{X^{n}_{p}\}=\) Span\(\{X^{n}_{p-1},{\mathbf {x}}(n-p)P^{\perp }\left[ X^{n}_{p-1}\right] \}\). In terms of projection operator, we can write the following:

$$\begin{aligned} P[X^{n}_{p}]=P[X^{n}_{p-1}] + P[{\mathbf {x}}(n-p)P^{\perp }[ X^{n}_{p-1}]]. \end{aligned}$$
(39)

Expanding the projection operator, corresponding to the second term on the R.H.S. of (39), we obtain

$$\begin{aligned}&P\left[ X^{n}_{p} \right] = P\left[ X^{n}_{p-1} \right] + P^{\perp }\left[ X^{n}_{p-1} \right] {\mathbf {x}}(n-p)^T\left[ {\mathbf {x}}(n-p)P^{\perp }[X^{n}_{p-1}]{\mathbf {x}}(n-p)^T\right] ^{-1}\nonumber \\&\quad {\mathbf {x}}(n-p) P^{\perp } \left[ X^{n}_{p-1} \right] , \end{aligned}$$
(40)

and the update formula for the projection operator corresponding to the orthogonal complement space can be written as

$$\begin{aligned}&P^{\perp }\left[ X^{n}_{p} \right] \triangleq I-{} P\left[ X^{n}_{p} \right] \nonumber \\&\quad = P^{\perp }\left[ X^{n}_{p-1} \right] - {} P^{\perp }\left[ X^{n}_{p-1} \right] {\mathbf {x}}(n-p)^T\left[ {\mathbf {x}}(n-p) {} P^{\perp }[X^{n}_{p-1}]{\mathbf {x}}(n-p)^T\right] ^{-1} \nonumber \\&\quad {\mathbf {x}}(n-p) {} P^{\perp } \left[ X^{n}_{p-1} \right] . \end{aligned}$$
(41)

The inner product update relation, as given in [14], can be obtained by pre-multiplying (41) by \({\nu }\) and post-multiplying by \({\mathbf {w}}^{T}\), as given below:

$$\begin{aligned}&{\nu }{} P^{\perp }\left[ X^{n}_{p} \right] {\mathbf {w}}^T = {\nu }{} P^{\perp }\left[ X^{n}_{p-1} \right] {\mathbf {w}}^T- {\nu } {} P^{\perp }\nonumber \\&\quad \left[ X^{n}_{p-1} \right] {\mathbf {x}}(n-p)^T\left[ {\mathbf {x}}(n-p) {} P^{\perp }[X^{n}_{p-1}]{\mathbf {x}}(n-p)^T\right] ^{-1}\nonumber \\&{\mathbf {x}}(n-p) {} P^{\perp } \left[ X^{n}_{p-1} \right] {\mathbf {w}}^T. \end{aligned}$$
(42)

Along with (42), update formulas as proposed in [41] and [42], have also been used in the development of the proposed algorithm. For more information, refer [41] and [42]. For a quick reference, these relations are given as follows:

Corollary D

from rm [41] Let \({\nu }\), \({\mathbf {w}}\) and \({\mathbf {v}}\) be row vectors \(\in {\mathbb {R}}^{M}\) and \(\left[ {} {X_{1:n}}\mid {\mathbf {v}}\right] \) is an augmented set defined as follows:

$$\begin{aligned} \left[ {} {X_{1:n}}\mid {\mathbf {v}}\right] =\left[ \begin{array}{ccccc} {{\mathbf {x}}_{1}}&{{\mathbf {x}}_{2}}&\cdots&{{\mathbf {x}}_{n}}&{\mathbf {v}} \end{array}\right] ^T. \end{aligned}$$
(43)

An update relation, given as Corollary 1.1 in [41], is stated as follows:

$$\begin{aligned}&{\nu }{} P^{\perp }\left[ {\mathbf {v}}\right] {} P^{\perp }\left[ X_{1:n}P^{\perp }\left[ {\mathbf {v}}\right] \right] {\mathbf {w}}^T ={\nu } {} P^{\perp }\left[ X_{1:n}\right] {\mathbf {w}}^T- {\nu } {} P\left[ {\mathbf {v}} {} P^{\perp }\left[ X_{1:n}\right] \right] {\mathbf {w}}^T. \end{aligned}$$
(44)

Pseudo-Inverse Update Relation from [42]:

Let \({\mathbf {z}}\) and \({\mathbf {v}}\) be row vectors belonging to \({\mathbb {R}}^{M}\) and \({} X_{1:n}\) is the matrix as discussed above. Consider, the term \({} K_{n}[v]\) defined as follows:

$$\begin{aligned}&{K_{n}[{\mathbf {v}}]={} X_{1:n}^{T}[{\mathbf {v}}][{} X_{1:n}[{\mathbf {v}}]{} X_{1:n}^{T}[{\mathbf {v}}]]^{-1}}, \end{aligned}$$
(45)
$$\begin{aligned}&\quad \text{ where, }\nonumber \\&X_{1:n}[{\mathbf {v}}]\triangleq \left[ {}{(P^{\perp }[{\mathbf {v}}]{{\mathbf {x}}}_1^T)}\ldots {}{(P^{\perp }[{\mathbf {v}}]{{\mathbf {x}}}_n^T)} \right] ^{T},\end{aligned}$$
(46)
$$\begin{aligned}&K_{n}[0]=X_{1:n}^{T}[X_{1:n}X_{1:n}^T]^{-1}. \end{aligned}$$
(47)

\({} K_{n}[{\mathbf {v}}]\) is the pseudo-inverse of \({} {X_{1:n}[{\mathbf {v}}]}\). An update relation for \({}{K_{n}[{\mathbf {v}}]}\), as given in [42] is:

$$\begin{aligned}&{{\mathbf {z}} {} K_n[{\mathbf {v}}]}=[{{\mathbf {z}} {} K_{n-1}[{\mathbf {0}}]}\mid 0] +{{\mathbf {z}} {} P^{\perp }[X_{1:n-1}] {x}_n^T} {[{x}_n {} P^{\perp }[X_{1:n-1}] {x}_n^T]^{-1}} .{[(-{x}_{n} {} K_{n-1}[{\mathbf {0}}])}\mid 1] \nonumber \\&\quad +{{\mathbf {z}} {} P^{\perp }[X_{1:n}] {\mathbf {v}}^T[ {\mathbf {v}} {} P^{\perp }[X_{1:n}] {\mathbf {v}}^T]^{-1}}. {(-{\mathbf {v}} {} K_n[0])}. \end{aligned}$$
(48)

It can be observed from the above update equation that the first two terms on the right-hand side update the matrix \({K_{n-1}[0]}\) to \({K_{n}[0]}\) and the last term updates \({K_{n}[0]}\) to \({K_{n}[v]}\). For more information and derivation of (48), refer [42].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fatimah, B., Joshi, S.D. Signal Matched Multirate Filter Bank Design for Optimum Coding Gain and its Application in Real-Time Sleep Apnea Detection. Circuits Syst Signal Process 41, 6427–6461 (2022). https://doi.org/10.1007/s00034-022-02092-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02092-6

Keywords

Navigation