Skip to main content
Log in

A Novel Design of Voltage and Temperature Resilient 9-T Domino Logic XOR /XNOR Cell

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

A novel domino logic XOR /XNOR cell design is presented that is appropriate for low-power and low-voltage domain. The proposed domino XOR/XNOR cell is implemented using Predictive Technology Model (PTM) for CMOS technology using HSPICE simulator at 22-nm node. Important device performance parameters such as propagation delay (tp), power consumption (pwr), power delay product (PDP) and energy delay product (EDP) are investigated, and the results are analyzed with existing XOR/XNOR cells. The proposed design consumes less power as compared to other existing design and hence provides improved PDP and EDP. The same has been validated using simulation results. Consequently, this article carries robustness analysis to study the impact of voltage and temperature variations on power consumption of the proposed circuit. The proposed XOR/XNOR cell is also used to design a power-efficient 4-bit even parity generator (EPG) as an application. This research paper proposes a low-power domino logic XOR/XNOR cell architecture using 0.7 V supply with a total power consumption of 0.314 µW. The proposed power-efficient domino XOR/XNOR cell is strong candidate suitable for biomedical applications. Almost in every biomedical application, analog-to-digital converter (ADC) plays a key role for sensing the different input parameters like pressure and temperature, whereas adders are used as data path in digital signal processing unit. Therefore, the use of proposed XOR/XNOR cell design guarantees power-efficient high-performance portable biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data sharing was not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. M. Aguirre-Hernandez, M. Linares-Aranda, CMOS full-adders for energy-efficient arithmetic applications. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 19(4), 718–721 (2011). https://doi.org/10.1109/tvlsi.2009.2038166

    Article  Google Scholar 

  2. M. Alioto, G. Palumbo, M. Pennisi, Understanding the effect of process variations on the delay of static and domino logic. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 18(5), 697–710 (2010). https://doi.org/10.1109/tvlsi.2009.2015455

    Article  Google Scholar 

  3. M. Amini-Valashani, M. Ayat, S. Mirzakuchaki, Design and analysis of a novel low-power and energy-efficient 18T hybrid full adder. Microelectron. J. 74, 49–59 (2018). https://doi.org/10.1016/j.mejo.2018.01.018

    Article  Google Scholar 

  4. A. Anita Angeline, V.S. Kanchana Bhaaskaran, High speed wide fan-in designs using clock controlled dual keeper domino logic circuits. ETRI J. 41(3), 383–395 (2019). https://doi.org/10.4218/etrij.2018-0313

    Article  Google Scholar 

  5. C. Cheng, S. Chang, J. Wang, W. Jone, Charge sharing fault detection for CMOS domino logic circuits. Proceedings 1999 IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (EFT'99) (1999). https://doi.org/10.1109/dftvs.1999.802872

  6. E.S. Chew, M.W. Phyu, W.L. Goh, in Ultra low-power full-adder for biomedical applications. 2009 IEEE International Conference of Electron Devices and Solid-State Circuits (EDSSC) (2009). https://doi.org/10.1109/edssc.2009.5394177

  7. S. Garg, T.K. Gupta, Low power domino logic circuits in deep-submicron technology using CMOS. Eng. Sci. Technol. Int. J. 21(4), 625–638 (2018). https://doi.org/10.1016/j.jestch.2018.06.013

    Article  Google Scholar 

  8. S. Garg, T.K. Gupta, Low leakage domino logic circuit for wide fan-in gates using CNTFET. IET Circuits Devices Syst. 13(2), 163–173 (2019). https://doi.org/10.1049/iet-cds.2018.5135

    Article  Google Scholar 

  9. S. Ghalamdoost Pirbazari, A. Souri, R. Faghih Mirzaee, S. Jabbehdari, Multi valued parity generator based on Sudoku tables: properties and detection probability. IET Commun. 14(14), 2377–2386 (2020). https://doi.org/10.1049/iet-com.2019.0247

    Article  Google Scholar 

  10. S.R. Ghimiray, P. Meher, P.K. Dutta, An improved charge-sharing elimination pseudo-domino logic. Int. J. Circuit Theory Appl. 48(8), 1346–1362 (2020). https://doi.org/10.1002/cta.2798

    Article  Google Scholar 

  11. S. Goel, A. Kumar, M.A. Bayoumi, Design of robust, energy-efficient full adders for deep-submicrometer design using Hybrid-CMOS logic style. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 14(12), 1309–1321 (2006). https://doi.org/10.1109/tvlsi.2006.887807

    Article  Google Scholar 

  12. M. Hajiqasemi, H. Beitollahi, in A novel design of domino XOR gate. 2020 25th International Computer Conference, Computer Society of Iran (CSICC) (2020). https://doi.org/10.1109/csicc49403.2020.9050076

  13. M. Jhamb, T. Dhall, T. Verma, H. Pudi, Pipelined adders for ultralow-power wearables. Turk. J. Electr. Eng. Comput. Sci. 27(1), 153–166 (2019). https://doi.org/10.3906/elk-1711-211

    Article  Google Scholar 

  14. J. Kandpal, A. Tomar, M. Agarwal, K.K. Sharma, High-speed hybrid-logic full adder using high-performance 10-T XOR–XNOR cell. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 28(6), 1413–1422 (2020). https://doi.org/10.1109/tvlsi.2020.2983850

    Article  Google Scholar 

  15. S. Kang, Y. Leblebici, Cmos Digital Integrated Circuits (Tata McGraw-Hill Education, 2003)

    Google Scholar 

  16. L.M. Koshy, G.J. Chandran, Low leakage and high performance tag comparator implemented in 180 nm CMOS technology. Procedia Comput. Sci. 46, 1261–1267 (2015). https://doi.org/10.1016/j.procs.2015.01.046

    Article  Google Scholar 

  17. H. Mahmoodi-Meimand, K. Roy, Diode-footed domino: a leakage-tolerant high fan-in dynamic circuit design style. IEEE Trans. Circuits Syst. I Regul. Pap. 51(3), 495–503 (2004). https://doi.org/10.1109/tcsi.2004.823665

    Article  Google Scholar 

  18. M. Mewada, M. Zaveri, in An input test pattern for characterization of a full-adder and N-bit ripple carry adder. 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI) (2016). https://doi.org/10.1109/icacci.2016.7732055

  19. F. Moradi, H. Mahmoodi, A. Peiravi, in A high speed and leakage-tolerant domino logic for high fan-in gates. Proceedings of the 15th ACM Great Lakes symposium on VLSI—GLSVSLI '05 (2005). https://doi.org/10.1145/1057661.1057775

  20. F. Moradi, A. Peiravi, H. Mahmoodi, in A new leakage-tolerant design for high fan-in domino circuits. Proceedings. The 16th International Conference on Microelectronics, 2004. ICM (2004). https://doi.org/10.1109/icm.2004.1434707

  21. F. Moradi, T. Vu Cao, E.I. Vatajelu, A. Peiravi, H. Mahmoodi, D.T. Wisland, Domino logic designs for high-performance and leakage-tolerant applications. Integration 46(3), 247–254 (2013). https://doi.org/10.1016/j.vlsi.2012.04.005

    Article  Google Scholar 

  22. M. Moradinezhad Maryan, M. Amini-Valashani, S.J. Azhari, A new circuit-level technique for leakage and short-circuit power reduction of static logic gates in 22-nm CMOS technology. Circuits Syst. Signal Process. 40(7), 3536–3560 (2021). https://doi.org/10.1007/s00034-020-01639-9

    Article  Google Scholar 

  23. V. Nandan, R.G.S. Rao, Minimization of digital logic gates and ultra-low power AES encryption core in 180CMOS technology. Microprocess. Microsyst. 74, 103000 (2020). https://doi.org/10.1016/j.micpro.2020.103000

    Article  Google Scholar 

  24. Nanoscale Integration and Modeling (NIMO) Group, Arizona State University (ASU). [Online]. https://ptm.asu.edu/

  25. D. Radhakrishnan, Low-voltage low-power CMOS full adder. IEE Proc. Circuits Devices Syst. 148(1), 19 (2001). https://doi.org/10.1049/ip-cds:20010170

    Article  Google Scholar 

  26. M. Sadollahi, K. Hamashita, K. Sobue, G.C. Temes, An 11-Bit 250-nW 10-kS/S SAR ADC with doubled input range for biomedical applications. IEEE Trans. Circuit Syst. I Regul. Pap. 65(1), 61–73 (2018). https://doi.org/10.1109/tcsi.2017.2712066

    Article  Google Scholar 

  27. U. Sharma, M. Jhamb, in A 0.7 V 0.144 µW frequency divider design with CNTFET-based master slave D-flip flop. Lecture Notes in Electrical Engineering, pp. 387–395 (2021). https://doi.org/10.1007/978-981-16-3767-4_37

  28. P. Srivastava, A. Islam, CNFET-based design of resilient MCML XOR/XNOR circuit at 16-NM technology node. Indian J. Eng. Mater. Sci. 22(3), 261–267 (2015)

    Google Scholar 

  29. P. Tyagi, R. Pandey, High-speed and area-efficient scalable N -bit digital comparator. IET Circuit Devices Syst. 14(4), 450–458 (2020). https://doi.org/10.1049/iet-cds.2018.5562

    Article  Google Scholar 

  30. S. Wang, C. Hung, A 0.3v 10b 3ms/S Sar adc with comparator calibration and kickback noise reduction for biomedical applications. IEEE Trans. Biomed. Circuit Syst. (2020). https://doi.org/10.1109/tbcas.2020.2982912

    Article  Google Scholar 

  31. H.Y. Yang, R. Sarpeshkar, A bio-inspired ultra-energy-Efficient analog-to-Digital converter for biomedical applications. IEEE Trans. Circuits Syst. I Regul. Pap. 53(11), 2349–2356 (2006). https://doi.org/10.1109/tcsi.2006.884463

    Article  Google Scholar 

Download references

Acknowledgements

The author wants to take an opportunity to express heartfelt gratitude to reviewer and editor as they helped the author to build this research article a quality treatise.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uma Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, U., Jhamb, M. A Novel Design of Voltage and Temperature Resilient 9-T Domino Logic XOR /XNOR Cell. Circuits Syst Signal Process 41, 6314–6332 (2022). https://doi.org/10.1007/s00034-022-02085-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02085-5

Keywords

Navigation