Skip to main content
Log in

Dual Window Fourier Transform (DWFT): A Tool to Analyze Non-stationary Signals

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Time–frequency representation plays a significant role in the analysis of non-stationary signals. A number of such representations have been reported in the literature with each having its own strengths. In this paper, an alternative time–frequency analysis method, Dual Window Fourier Transform (DWFT) has been suggested which enables compact localization of the signal components in joint time–frequency plane. The method utilizes two windows of optimal length for improving the resolution of the analyzed signal. The main contribution of this work is in the algorithm developed to find the optimal window length. This method, requiring no prior information, is applicable for multi-component and non-stationary signals. Moreover, a smoothed version of DWFT, that uses thresholding for removing interferences or reflections, has also been developed for signals which are closely localized in frequency domain. Both real world and simulated signals have been used to test the efficacy of the given method. Measures such as Hoyer’s measure, normalized Renyi entropy, ratio of norm-based measure and modified energy concentration have been used for performance evaluation. A comparative analysis of suggested method with other linear Time–Frequency Distribution methods has also been carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y. Abdoush, G. Pojani, G.E. Corazza, J.A. Garcia-Molina, Controlled-coverage discrete S-transform (CC-DST): theory and applications. Digital Signal Process. 88, 207–222 (2019). https://doi.org/10.1016/j.dsp.2019.02.012

    Article  MathSciNet  Google Scholar 

  2. M.A. Awal, S. Ouelha, S. Dong, B. Boashash, A robust high-resolution time-frequency representation based on the local optimization of the short-time fractional Fourier transform. Digital Signal Process. 70, 125–144 (2017). https://doi.org/10.1016/j.dsp.2017.07.022

    Article  Google Scholar 

  3. R.G. Baraniuk, P. Flandrin, A.J.E.M. Janssen, O.J.J. Michel, Measuring time-frequency information content using the renyi entropies. IEEE Trans. Inf. Theory 47(4), 1391–1409 (2001). https://doi.org/10.1109/18.923723

    Article  MATH  Google Scholar 

  4. B. Boashash, S. Ouelha, Automatic signal abnormality detection using time-frequency features and machine learning: a newborn EEG seizure case study. Knowl.-Based Syst. 106, 38–50 (2016). https://doi.org/10.1016/j.knosys.2016.05.027

    Article  Google Scholar 

  5. P. Chen, Q. Zhang, Classification of heart sounds using discrete time-frequency energy feature based on S transform and the wavelet threshold denoising. Biomed. Signal Process. Control 57, 101684 (2020). https://doi.org/10.1016/j.bspc.2019.101684

    Article  Google Scholar 

  6. R.N. Czerwinski, D.L. Jones, Adaptive short-time fourier analysis. IEEE Signal Process. Lett. 4(2), 42–45 (1997). https://doi.org/10.1109/97.554468

    Article  Google Scholar 

  7. I. Daubechies, The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inf. Theory 36(5), 961–1005 (1990). https://doi.org/10.1109/18.57199

    Article  MathSciNet  MATH  Google Scholar 

  8. I. Djurovic, L. Stankovic, M. Simeunovic, Robust time-frequency representation based on the signal normalization and concentration measures. Signal Process. 104, 424–431 (2014). https://doi.org/10.1016/j.sigpro.2014.05.005

    Article  Google Scholar 

  9. K. Fares, K. Amine, E. Salah, A robust blind color image watermarking based on Fourier Transform domain. Optik 208, 164562 (2020). https://doi.org/10.1016/j.ijleo.2020.164562

    Article  Google Scholar 

  10. P. Flandrin, P. Borgnat, Time-frequency energy distributions meet compressed sensing. IEEE Trans. Signal Process. 58(6), 2974–2982 (2010). https://doi.org/10.1109/TSP.2010.2044839

    Article  MathSciNet  MATH  Google Scholar 

  11. T. Gerkmann, M. Krawczyk-Becker, J.L. Roux, Phase processing for single-channel speech enhancement: history and recent advances. IEEE Signal Process. Mag. 32, 55–66 (2015). https://doi.org/10.1109/MSP.2014.2369251

    Article  Google Scholar 

  12. W. He, T. Hao, H. Ke, W. Zheng, K. Lin, Joint time-frequency analysis of ground penetrating radar data based on variational mode decomposition. J. Appl. Geophys. 181, 104146 (2020). https://doi.org/10.1016/j.jappgeo.2020.104146

    Article  Google Scholar 

  13. T. Hon, A. Georgakis, Enhancing the resolution of the spectrogram based on simple adaption procedure. IEEE Trans. Signal Process. 60, 5566–5571 (2012). https://doi.org/10.1109/TSP.2012.2208637

    Article  MathSciNet  MATH  Google Scholar 

  14. T. Hon, S. Subramaniam, A. Georgakis, S. Alty, STFT-based denoising of elastograms, in Proc. IEEE Int. Conf. Acoust., Speech and Signal Processing (ICASSP) (2011), pp. 677–680. https://doi.org/10.1109/ICASSP.2011.5946494

  15. A. Houghton, D. Gray, Making sense of the ECG: a hands-on guide, 3rd edition (2014)

  16. N. Hurley, S. Rickard, Comparing measures of sparsity. IEEE Trans. Inf. Theory 55(10), 4723–4741 (2009). https://doi.org/10.1109/TIT.2009.2027527

    Article  MathSciNet  MATH  Google Scholar 

  17. D.L. Jones, R.G. Baraniuk, A simple scheme for adapting time-frequency representations. IEEE Trans. Signal Process. 42, 3530–3535 (1994). https://doi.org/10.1109/78.340790

    Article  Google Scholar 

  18. D.L. Jones, T.W. Parks, A high resolution data-adaptive time-frequency representation. IEEE Trans. Acoust. Speech Signal Process. 38, 2127–2135 (1990). https://doi.org/10.1109/29.61539

    Article  Google Scholar 

  19. F. Jurado, J.R. Saenz, Comparison between discrete stft and wavelets for the analysis of power quality events. Electr. Power Syst. Res. 62, 183–190 (2002). https://doi.org/10.1016/S0378-7796(02)00035-4

    Article  Google Scholar 

  20. A. Kamal, J. Harness, G. Irving, A. Mearns, Skin photoplethysmography: a review. Comput. Methods Prog. Biomed. 28(4), 257–269 (1989). https://doi.org/10.1016/0169-2607(89)90159-4

    Article  Google Scholar 

  21. E. Mohamed, On the analysis of fingertip photoplethysmogram signals. Curr. Cardiol. Rev. 8(1), 14–25 (2012). https://doi.org/10.2174/157340312801215782

    Article  Google Scholar 

  22. R. Polikar, The wavelet tutorial. http://cseweb.ucsd.edu/~baden/Doc/wavelets/polikar_wavelets.pdf (1996)

  23. S. Qiu, Z. Chen, An interior point method for nonlinear optimization with a quasi-tangential subproblem. J. Comput. Appl. Math. 334, 77–96 (2018). https://doi.org/10.1016/j.cam.2017.11.001

    Article  MathSciNet  MATH  Google Scholar 

  24. E.J. Rothwell, K.M. Chen, D.P. Nyquist, An adaptive-window-width short-time fourier transform for visualization of radar target substructure resonances. IEEE Trans. Antennas Propag. 46, 1393–1395 (1998). https://doi.org/10.1109/8.719988

    Article  Google Scholar 

  25. L. Stankovic, Measuring time-frequency distributions concentration, in Time-Frequency Signal Analysis and Processing, 2nd edn. ed. B. boashash (Academic press, 2015), pp. 401–408

  26. R.G. Stockwell, A basis for efficient representation of the s-transform. Digital Signal Process. 17(1), 371–393 (2007). https://doi.org/10.1016/j.dsp.2006.04.006

    Article  Google Scholar 

  27. R.G. Stockwell, L. Mansinha, R.P. Lowe, Localization of the complex spectrum: the s transform. IEEE Trans. Signal Process. 44(4), 998–1001 (1996). https://doi.org/10.1109/78.492555

    Article  Google Scholar 

  28. V. Sucic, N. Saulig, B. Boashash, Estimating the number of components of a multicomponent nonstationary signal using the short-term time-frequency rényi entropy. EURASIP J. Adv. Signal Process. 1, 125 (2011). https://doi.org/10.1186/1687-6180-2011-125

    Article  Google Scholar 

  29. L. Sun, Z. Wang, H. Pu, G. Yuan, L. Guo, T. Pu, Z. Peng, Spectral analysis for pulmonary nodule detection using the optimal fractional s-transform. Comput. Biol. Med. 119, 103675 (2020). https://doi.org/10.1016/j.compbiomed.2020.103675

    Article  Google Scholar 

  30. A. Tiwari, T.H. Falk, Lossless electrocardiogram signal compression: a review of existing methods. Biomedical . Signal Process. Control 51, 338–346 (2019). https://doi.org/10.1016/j.bspc.2019.03.004

    Article  Google Scholar 

  31. H. Tokutaka, Y. Maniwa, E. Gonda, M. Yamamoto, T. Kakihara, M. Kurata, K. Fujimura, L. Shigang, M. Ohkita, Construction of a general physical condition judgment system using acceleration plethysmogram pulse-wave analysis. International Workshop on Self-Organizing Maps, pp. 307–315 (2009). https://doi.org/10.1007/978-3-642-02397-2_35

  32. Y. Wang, Y. Bai, X. Xia, Z. Niu, Y. Yang, J. He, X. Li, Comparison of synchrosqueezing transform to alternative methods for time-frequency analysis of tms-evoked eeg oscillations. Biomed. Signal Process. Control 70, 102975 (2021). https://doi.org/10.1016/j.bspc.2021.102975

    Article  Google Scholar 

  33. Wikipedia (2020) Interior-point method. https://en.wikipedia.org/wiki/Interior-point_method

  34. Y. Yang, Z. Peng, W. Zhang, G. Meng, Parameterised time-frequency analysis methods and their engineering applications: a review of recent advances. Mech. Syst. Signal Process. 119, 182–221 (2019). https://doi.org/10.1016/j.ymssp.2018.07.039

    Article  Google Scholar 

  35. G. Yu, A multisynchrosqueezing-based high-resolution time-frequency analysis tool for the analysis of non-stationary signals. J. Sound Vib. 492, 115813 (2021). https://doi.org/10.1016/j.jsv.2020.115813

    Article  Google Scholar 

  36. J. Zhong, Y. Huang, Time-frequency representation based on an adaptive short-time fourier transform. IEEE Trans. Signal Process. 58(10), 5118–5128 (2010). https://doi.org/10.1109/TSP.2010.2053028

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The funding was provided by Ministry of Human Resource Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhil Walia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walia, A., Kaul, A. Dual Window Fourier Transform (DWFT): A Tool to Analyze Non-stationary Signals. Circuits Syst Signal Process 41, 6075–6097 (2022). https://doi.org/10.1007/s00034-022-02061-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02061-z

Keywords

Navigation